
Automated Driving Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ Release Notes
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

ASAM OpenSCENARIO Export: Share a driving scenario using the ASAM
OpenSCENARIO 1.0 format . 1-2

Driving Scenario Import: Create driving scenarios with road data
imported from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service
. 1-2

INS Sensor Model: Generate synthetic readings from an inertial
navigation and GPS sensor in driving scenarios 1-3

Ibeo File Reader: Read sensor data from Ibeo data container (IDC) files
. 1-3

Barriers: Add guardrails and Jersey barriers to driving scenarios 1-3

Radar Data Generator: Generate synthetic sensor detections and tracks
from a driving scenario . 1-4

Driving Scenario Enhancements: Select multiple actors, align and
distribute actors, and additional features . 1-5

Select Multiple Actors . 1-5
Align and Distribute Actors . 1-5
Specify Maximum Number of Actors and Lane Boundaries in Scenario

Reader Block . 1-6
Read Actor Profiles from Scenario Reader Block . 1-6
Spawn and Despawn Actors Multiple Times . 1-6
Preview Actor Times of Arrival at Waypoints . 1-7

HERE HD Live Map Scenario Enhancements: Generate road networks
with junctions and specifications for multiple lanes along a single road
. 1-7

Multiple Lane Specifications: Add or drop lanes along a road 1-8

Road Groups: Define road intersections . 1-9

OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format
. 1-10

Out-of-Sequence Measurements Handling: Ignore out-of-sequence
measurements of object tracks, or terminate tracking when one is
encountered . 1-10

iii

Contents

Labeler Enhancements: Label object instances for semantic
segmentation, automate labeling of multiple signals simultaneously,
and additional features . 1-10

Unreal Engine Vehicle Enhancements: Import custom meshes and control
vehicle lights . 1-11

Unreal Engine Scene Environment: Control weather and sun position . 1-12

Bird's-Eye View Example: Create a 360° bird's-eye-view image around a
vehicle . 1-12

Radar and Tracking Examples: Process radar multipath detections,
simulate radar ghosts from multipath detections, and fuse lidar and
radar tracks in Simulink . 1-12

Localization and Mapping Examples: Build an occupancy map from lidar
data using SLAM, develop a stereo visual SLAM algorithm, and perform
localization using HD map traffic data . 1-13

Motion Planning Example: Plan a path through an urban environment
using a dynamic occupancy grid map . 1-13

Automated Driving Reference Applications: Examples on vehicle sensor
fusion, and code generation of vehicle detector, lane following
controller, and lane change planner . 1-13

Functionality being removed or changed . 1-14
hereHDLMConfiguration(region) syntax has been removed 1-14
radarDetectionGenerator System object and Radar Detection Generator

block are not recommended . 1-14

R2020b

Reverse Motion in Driving Scenarios: Simulate driving maneuvers such as
backing into parking spots . 2-2

OpenStreetMap Roads: Create driving scenarios using road data imported
from the OpenStreetMap web service . 2-2

OpenDRIVE Export: Share a driving scenario using the OpenDRIVE
format . 2-3

Localization Examples: Develop lidar and visual SLAM algorithms for
navigation using the Unreal Engine simulation environment 2-4

Simulation 3D Vision Detection Generator Block: Generate synthetic
object and lane boundary detections from the Unreal Engine
simulation environment . 2-4

iv Contents

Lidar Sensor Model Extensions: Generate synthetic point clouds from
scenarios in Driving Scenario Designer app and in Simulink 2-4

Driving Scenario Enhancements: Rotate actors interactively, specify yaw
angles with trajectories, and additional features 2-6

Interactive Actor Rotation . 2-6
Yaw Angles for Actor Trajectories . 2-6
Actor Spawn and Despawn . 2-7
Mesh Plotter in Bird's-Eye Plot . 2-7
Ego Vehicle Indicator . 2-8
Actor Pose Indicator . 2-8
Target Poses in Specified Range . 2-9
Named Roads and Actors . 2-9
Road Object . 2-9

HERE HD Live Map Marketplace Support: Read and visualize high-
definition map data from the HERE HD Live Map Marketplace service
. 2-9

HERE HD Live Map Localization Layers: Read localization data such as
barriers, signs, and poles from a road network 2-10

Labeler Enhancements: Label objects in images and video using projected
3-D bounding boxes, load custom image formats, use additional
keyboard shortcuts, and more . 2-10

Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and
roll with improved camera controls and other usability improvements
. 2-11

Smooth Transition Between Views . 2-11
Cycle Through Vehicles in Scene . 2-12
Vehicle Acceleration and Rotation . 2-12
Vehicle Pitch and Roll . 2-13
Camera Distance . 2-13
Free-Camera Views . 2-14

Tracking Examples: Perform grid-based tracking, track multiple lane
boundaries, and generate code for track-level fusion 2-14

Trajectory Planning Example: Plan a vehicle trajectory through highway
traffic . 2-14

Scenario Generation Example: Automate scenario generation for driving
applications . 2-14

Automated Driving Reference Applications: Lane following with
intelligent vehicles, lane following with RoadRunner scenes, traffic
light negotiation with Unreal Engine, and code generation for lane
marker detection . 2-15

Driving Scenario Performance: Improved performance when simulating
scenarios with large numbers of actors . 2-15

Functionality being removed or changed . 2-16
hereHDLMConfiguration(region) syntax will be removed 2-16

v

InflationRadius and VehicleDimensions properties of vehicleCostmap object
have been removed . 2-16

vehicleDetectorFasterRCNN function now uses MobileNet-v2 network
architecture and does not require type of vehicle detector model as input
. 2-17

R2020a

Multisignal Ground Truth Labeling: Label multiple lidar and video signals
simultaneously . 3-2

Lidar Labeling: Label lidar point clouds to train deep learning models
. 3-3

3D Scene Customization: Simulate driving scenarios in a 3D environment
using scenes created in the Unreal Editor . 3-4

Lidar Sensor Model: Generate synthetic point clouds from programmatic
driving scenarios . 3-4

Bird's-Eye Scope Enhancements: Visualize radar and lidar data from 3D
simulation sensors, and visualize actors from custom blocks 3-5

HERE HD Live Map Roads in Scenarios: Create driving scenarios using
imported road data from high-definition geographic maps 3-6

Scenario Coordinate Transformation Blocks: Convert between vehicle and
world coordinates in driving scenarios, and convert between cuboid
and 3D simulation coordinates . 3-6

3D Display for Cuboid Simulations: Visualize scenarios in a 3D
environment from the Driving Scenario Designer app 3-8

Programmatic Sensor Import: Read programmatically created radar and
vision sensors into the Driving Scenario Designer app 3-8

Custom Actor Colors: Specify the colors of actors in a driving scenario
. 3-8

Ego Vehicle Ground Following: Orient the ego vehicle to follow the road
surface elevation in closed-loop simulations . 3-9

Rear-Facing Lane Detections: Detect lane boundaries from rear-facing
cameras in driving scenarios . 3-9

Road Interactions in Scenarios: Control the ability to modify roads in
driving scenarios . 3-9

Cuboid Versions of 3D Simulation Scenes: Build scenarios in the Driving
Scenario Designer app for use in a 3D simulation environment 3-10

vi Contents

laneMarking Function Enhancements: Define lane marking with multiple
marker styles . 3-10

trajectory Function Enhancements: Pause actors at a waypoint 3-11

Driving Scenario Designer App Enhancements: Add composite lane
markings and wait times . 3-12

YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector
pretrained by a you-only-look-once (YOLO) v2 network 3-12

SSD Object Detection: Detect objects in monocular camera images using
the single shot multibox detector (SSD) algorithm 3-12

Quaternions: Represent orientation and rotations efficiently for
localization . 3-13

Geographic Coordinate Transformations: Convert between geographic
and local coordinates . 3-13

Multiroute Geographic Map Display: Simultaneously stream geographic
coordinates from multiple driving routes . 3-13

Multiple-Object Tracking Enhancements: Initialize, confirm, and delete
tracks, and predict track states at specified times 3-13

Track History Logic: Confirm and delete tracks based on recent track
history . 3-14

Alpha-Beta Estimation Filter: Track objects using a linear motion and
measurement models . 3-14

Ground Truth Labeler Enhancements: Rename scene labels, select ROI
color, and configure ROI label name display . 3-14

Headless Mode: Run 3D simulations more quickly by not opening the
Unreal Engine visualization window . 3-14

3D Simulation Version Upgrade: Run 3D simulations using Unreal
Engine, Version 4.23 . 3-14

Box Truck Vehicle Type: Simulate vehicles with the dimensions of a box
truck in the 3D simulation environment . 3-15

Driving Scenarios: Improved performance when creating road networks
and actor trajectories . 3-15

Code Generation: Generate C/C++ code using MATLAB Coder 3-15

Lidar SLAM Examples: Build a map from lidar data using a simultaneous
localization and mapping algorithm . 3-15

Tracking Examples: Fuse radar and lidar tracks, perform track-to-track
fusion in Simulink, and track vehicles using lidar in Simulink 3-16

vii

Automated Driving Reference Applications: Simulate highway lane
following, highway lane change, and traffic light negotiation systems
. 3-16

Functionality being removed or changed . 3-16
ConfirmationParameters and NumCoastingUpdates properties of the

multiObjectTracker System object are not recommended 3-16
Track output format of multiObjectTracker changed 3-17
Renamed parameter in Simulation 3D Scene Configuration block 3-17

R2019b

3D Simulation: Develop, test, and verify driving algorithms in a 3D
simulation environment rendered using the Unreal Engine from Epic
Games . 4-2

drivingScenario Import: Read programmatically created driving scenarios
into the Driving Scenario Designer app and Simulink 4-4

Driving Scenario Designer Export to Simulink: Generate Simulink models
of driving scenarios and sensors . 4-4

drivingScenario Enhancements: Create roads with driving, parking,
border, shoulder, and restricted lanes . 4-4

roadNetwork Enhancements: Import additional lane types of OpenDRIVE
roads into a driving scenario . 4-4

Bird's-Eye Scope World Coordinates View: Visualize scenarios in world
coordinates . 4-5

Velocity Profiler: Generate the velocity profile of a driving path given
kinematic constraints . 4-5

Ground Truth Labeling Enhancements: Copy and paste pixel labels,
improved pan and zoom, and improved frame navigation 4-5

Lane Boundary Detection Algorithm: Automate the labeling of lane
boundaries using the Ground Truth Labeler . 4-5

Lidar Example: Build a map from lidar data . 4-5

Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to
increase automotive safety (requires Sensor Fusion and Tracking
Toolbox) . 4-6

HERE HD Live Map Linux Support: Read and visualize high-definition
map data on Linux machines . 4-6

YOLO v2 Acceleration: Acceleration support for YOLO v2 object detection
. 4-6

viii Contents

Code Generation: Generate C/C++ code using MATLAB Coder 4-6

Functionality being removed or changed . 4-6
InflationRadius and VehicleDimensions properties of vehicleCostmap object

will be removed . 4-6

R2019a

HERE HD Live Map Reader: Read and visualize data from high-definition
maps designed for automated driving applications 5-2

Custom Basemaps: Choose geographic basemaps on which to visualize
driving routes in geoplayer . 5-2

Scenario Reader: Read driving scenarios into Simulink to test vehicle
controllers and sensor fusion algorithms . 5-2

Ground Truth Labeling: Organize labels by logical groups, use assisted
freehand for pixel labeling, and other enhancements 5-2

Longitudinal Controller: Control the velocity of autonomous vehicles . . 5-3

Dynamic Lateral Controller: Control the steering angle of autonomous
vehicles considering realistic vehicle dynamics 5-3

Path Smoother: Smooth a planned vehicle path . 5-3

Code Generation for Path Planning: Generate C/C++ code for vehicle path
planning using MATLAB Coder . 5-3

YOLO v2 Object Detection: Detect objects in a monocular camera using a
"you-only-look-once" v2 deep learning object detector 5-4

Scenario Generation Example: Generate virtual driving scenarios from
recorded vehicle data . 5-4

Tracking Examples: Track vehicles using lidar; evaluate the performance
of extended object trackers . 5-4

R2018b

Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections, and
tracks in your model . 6-2

Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP and
other prebuilt scenarios . 6-2

ix

OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving
scenario . 6-2

Improved Collision Checking in vehicleCostmap Object: Configure
collision checking to plan paths through narrow passages 6-2

Kinematic Lateral Controller: Control the steering angle of an
autonomous vehicle . 6-2

Monocular Camera Parameter Estimation: Configure a monocular camera
by estimating its extrinsic parameters . 6-3

Radar Sensor Model Enhancements: Model occlusions in radar sensors
. 6-3

Obtain transition poses and direction changes from a planned path 6-3

Define multiple custom labels in Ground Truth Labeler connector 6-3

Ground Truth Labeler enhancements . 6-3

Actors follow road elevation and banking angles in Driving Scenario
Designer . 6-3

Monocular camera setup with fisheye lens example 6-4

Sensor fusion and tracking examples . 6-4

Functionality being removed or changed . 6-4
InflationRadius and VehicleDimensions properties of vehicleCostmap object

are not recommended . 6-4
connectingPoses function and driving.Path object properties KeyPoses and

NumSegments are not recommended . 6-5
Corrections to Image Width and Image Height camera parameters of

Driving Scenario Designer . 6-5

R2018a

Driving Scenario Designer: Interactively define actors and driving
scenarios to test controllers and sensor fusion algorithms 7-2

Path Planning: Plan driving paths using an RRT* path planner and
costmap . 7-2

Streaming Geographic Map Display: Visualize a geographic route on a
map . 7-2

Ground Truth Pixel Labeling: Interactively label individual pixels in video
data . 7-2

x Contents

Ground Truth Label Attributes: Organize and classify ground truth labels
using attributes and sublabels . 7-2

Lidar Segmentation: Quickly segment 3-D point clouds from lidar 7-2

ACC Reference Application: Use a reference model to simulate and test
adaptive cruise controller (ACC) systems . 7-2

Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar data
into MATLAB . 7-3

Detect lanes more precisely by using third-degree polynomial lane
boundary models . 7-3

Add and detect lanes in Driving Scenario . 7-3

Transform [x,y,z] locations in vehicle coordinates to image coordinates
. 7-3

Path method being removed . 7-3

Direction of Yaw Angle Rotation Adjusted . 7-4

R2017b

Sensor Fusion Simulink Blocks: Track multiple objects and fuse
detections from multiple sensors . 8-2

Sensor Simulation Using Simulink Blocks: Generate synthetic object lists
from camera and radar sensor models . 8-2

Ground Truth Labeling App: Reverse playback capability while processing
algorithms . 8-2

Code Generation for Sensor Models: Generate C code for camera and
radar sensor models . 8-2

Autonomous Driving Examples . 8-2

R2017a

Ground Truth Labeling . 9-2

Monocular Camera Sensor Configuration . 9-2

Object and Lane Boundary Detection . 9-2

xi

Multi-object Tracking . 9-3

Bird’s-Eye Plot . 9-3

Driving Scenario Generation and Sensor Models . 9-3

Automated Driving Examples . 9-3

xii Contents

R2021a

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

1

ASAM OpenSCENARIO Export: Share a driving scenario using the
ASAM OpenSCENARIO 1.0 format
Export a driving scenario to the ASAM OpenSCENARIO® format from a drivingScenario object or
the Driving Scenario Designer app.

• To programmatically export a driving scenario from a drivingScenario object to the ASAM
OpenSCENARIO format, use the 'OpenSCENARIO' argument of the export function and a file
name with the .xosc extension. For example:

filename = 'newfile.xosc';
export(scenario,'OpenSCENARIO',filename)

• To interactively export a driving scenario from the Driving Scenario Designer app to the ASAM
OpenSCENARIO format, select Export > ASAM OpenSCENARIO File.

Driving Scenario Import: Create driving scenarios with road data
imported from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service. For more details, see “Import
Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario”.

Programmatically import these roads into a drivingScenario object by using the
'ZenrinJapanMap' syntaxes in the roadNetwork function. Manage your credentials by using the
zenrinCredentials function.

Creating driving scenarios from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) requires the
support package Automated Driving Toolbox Importer for Zenrin Japan Map API 3.0 (Itsumo NAVI
API 3.0) Service. For information about installing support packages, see “Get and Manage Add-Ons”.

R2021a

1-2

To gain access to the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service and get the required
credentials (a client ID and secret key), you must enter into a separate agreement with Zenrin.

INS Sensor Model: Generate synthetic readings from an inertial
navigation and GPS sensor in driving scenarios
The insSensor System object™ models a device that fuses measurements from an inertial
navigation system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the
fused measurements. To model an INS sensor in a programmatic driving scenario, follow these steps:

1 Create a driving scenario by using a drivingScenario object. Use the 'GeoReference'
name-value argument to specify the geographic origin of the route that correlates to the inertial
navigation and GPS sensor.

2 Add an ego vehicle and generate its trajectory by using the smoothTrajectory function. Unlike
the trajectory function, the smoothTrajectory function generates trajectories that avoid
discontinuities in acceleration and are more suitable for generating realistic INS readings.

3 Obtain the state of the ego vehicle by using the state function. State information includes the
position, velocity, orientation, and acceleration of the vehicle.

4 Create an insSensor object that is mounted to the ego vehicle, and simulate the driving
scenario. Specify the actor state as ground truth data for the sensor. The sensor uses this data to
generate sensor readings at each simulation time step.

To model an INS sensor in the Driving Scenario Designer app, see “Generate INS Sensor
Measurements from Interactive Driving Scenario”.

Ibeo File Reader: Read sensor data from Ibeo data container (IDC)
files
Ibeo Automotive Systems uses IDC files to record sensor messages from camera, lidar, GPS, and other
sensors. Use the ibeoFileReader object to read message headers and inspect the contents of an
IDC file. To select the messages of a specific sensor from this file, use the select function. You can
then use the readMessages or readNextMessage function to read the messages contained in the
file, and use these messages in automated driving workflows. For example, you can visualize image,
point cloud, and object detection data, or use vehicle state data to specify vehicles in a driving
scenario.

The reading of lidar data requires Lidar Toolbox™.

Barriers: Add guardrails and Jersey barriers to driving scenarios
You can now model guardrails and Jersey barriers in cuboid driving scenarios. You can add barriers
along an entire road edge or at a specific location within the scenario. This figure shows guardrail
barriers added to a scenario in the Driving Scenario Designer app.

1-3

https://zenrin.com/
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

To add barriers to programmatic driving scenarios, use the barrier function. Display barrier
outlines on bird's-eye plot using the plotBarrierOutline function.

In the Driving Scenario Designer app, two new actor classes, Jersey Barrier and Guardrail,
replace the existing Barrier class. The class editor features a new property called Actor Type.
This property allows users to set the actor type of a class to Vehicle, Other, or Barrier. The
property serves as a replacement for the Vehicle check box.

Compatibility Considerations
When you import existing scenario files with Barrier objects into Driving Scenario Designer, all
barriers are instantiated as Jersey Barrier objects by default. If you defined custom actor classes,
ensure that their class IDs are not 5 or 6, because actors with those class IDs are instantiated as
Jersey Barrier and Guardrail objects, respectively.

Radar Data Generator: Generate synthetic sensor detections and
tracks from a driving scenario
The drivingRadarDataGenerator System object is a statistical radar sensor model that generates
synthetic data from a driving scenario. This object provides the option to generate tracks, detections,
and clustered detections. To model this sensor in Simulink®, use the Driving Radar Data Generator
block.

R2021a

1-4

Compatibility Considerations
This System object and block replace the radarDetectionGenerator System object and Radar
Detection Generator block, unless you require C/C++ code generation. For more details, see
“radarDetectionGenerator System object and Radar Detection Generator block are not
recommended” on page 1-14.

Driving Scenario Enhancements: Select multiple actors, align and
distribute actors, and additional features
Select Multiple Actors

In the Driving Scenario Designer app, hold Ctrl and click each actor you want to select.
Alternatively, hold Shift and click and drag to draw a box around the actors you want to select.

You can then uniformly move, align, or distribute the selected actors.

Align and Distribute Actors

In the Driving Scenario Designer app, to align selected actors along a specific actor dimension or
to distribute actors along a road, right-click one of the actors and select one of the options in the
Align Actors or Distribute Actors menus.

This figure shows actors aligned along their left side.

This figure shows actors distributed vertically along a road.

1-5

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

Specify Maximum Number of Actors and Lane Boundaries in Scenario Reader Block

In the Scenario Reader block, you can now set the maximum number of actors and lane boundaries
that you can have in a scenario by using the Maximum number of actors and Maximum number
of lane boundaries parameters, respectively.

Set these maximum values when you want to reuse the same actor or lane boundary buses across
scenarios that have varying numbers of actors or lane boundaries. This situation is common when
outputting actors or lane boundaries from a referenced model.

Read Actor Profiles from Scenario Reader Block

In sensor blocks such as the Vision Detection Generator block, you can now read actor profile
information directly from the Scenario Reader block that is in your model. Actor profiles are the
physical and radar characteristics of the actors in the driving scenario. The sensor blocks use these
profiles to generate detections or other scenario data.

Previously, you had to either specify the actor profiles within each sensor block or specify a MATLAB®

expression that obtained these profiles from the base workspace. Newly created sensor blocks now
read the actor profiles from the Scenario Reader block by default.

Spawn and Despawn Actors Multiple Times

You can now add or remove actors multiple times during a driving scenario. Specify multiple entry
times and exit times for an actor in the Driving Scenario Designer app, or by using the actor
function with a drivingScenario object.

R2021a

1-6

Preview Actor Times of Arrival at Waypoints

The arrival time indicator in the Driving Scenario Designer app indicates the arrival time of an
actor at each waypoint prior to running the simulation. The app enables the arrival time indicator for
all actors when either the stop-and-go or the dynamic actor spawn and despawn feature is enabled
for at least one actor in the scenario. In the scenario canvas, point to any waypoint along the
trajectory of an actor to see the time of arrival of the actor at that waypoint.

HERE HD Live Map Scenario Enhancements: Generate road networks
with junctions and specifications for multiple lanes along a single road
In the Driving Scenario Designer app, road networks generated with data from the HERE HD Live
Map 1 web service now contain road junctions and specifications for multiple lanes along a single
road.

This table shows the enhanced road networks available in R2021a compared to the road networks
available in R2020b.

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

1-7

https://www.here.com

R2021a R2020b

You can also import these road networks into a drivingScenario object by using the
'HEREHDLiveMap' syntaxes of the roadNetwork function.

Multiple Lane Specifications: Add or drop lanes along a road
Add or drop lanes along a road by defining multiple lane specifications. To define multiple lane
specifications programmatically use compositeLaneSpec object with the road function.

You can also define multiple lane specifications in the Driving Scenario Designer app using these
new parameters on the Roads tab:

R2021a

1-8

• Number of Road Segments
• Segment Range
• Road Segment
• Segment Taper

Road Groups: Define road intersections
Use the roadGroup function to define intersections that connect two or more roads in a
drivingScenario object.

You can also import a road network containing intersections to the Driving Scenario Designer app.

1-9

OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format
You can now export the actors in a driving scenario and their properties to the OpenDRIVE® file
format either by using the export function of the drivingScenario object or in the Driving
Scenario Designer app.

Out-of-Sequence Measurements Handling: Ignore out-of-sequence
measurements of object tracks, or terminate tracking when one is
encountered
In the multiObjectTracker System object, the OOSMHandling property controls whether the
tracker neglects out-of-sequence measurements and continues running or stops running as soon as it
encounters an out-of-sequence measurement. To handle out-of-sequence measurements in the Multi-
Object Tracker block, use the equivalent Out-of-sequence measurements handling parameter.

Labeler Enhancements: Label object instances for semantic
segmentation, automate labeling of multiple signals simultaneously,
and additional features
The following table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler

R2021a

1-10

Enhancement Image
Labeler

Video
Labeler

Ground
Truth
Labeler

Lidar
Labeler

Label distinct instances of objects
belonging to the same class using a
polygon label. For more details, see
“Label Objects Using Polygons”.

Yes Yes Yes No

Use superpixel automation to quickly
pixel label regions of an image with
similar pixel values. For more details,
see “Label Pixels Using Superpixel
Tool”.

Yes Yes Yes No

Automate the labeling of multiple
signals together within a single
automation run. For an example, see
“Automate Ground Truth Labeling
Across Multiple Signals”.

No No Yes No

Label very large images (with at least
one dimension <8K) that previously
could not be loaded into memory. Load
these images as blocked images. For
more details, see “Label Large Images
in Image Labeler”.

Yes No No No

Use a custom reader function to import
any point cloud. For more details, see
“Use Custom Point Cloud Source
Reader for Labeling” (Lidar Toolbox).

No No No Yes

Define and view a region of interest
(ROI) in the point cloud and label
objects in it. For more details, see “ROI
View” (Lidar Toolbox).

No No No Yes

Control the point dimension of the
point cloud.

No No No Yes

Unreal Engine Vehicle Enhancements: Import custom meshes and
control vehicle lights
You can configure the Simulation 3D Vehicle with Ground Following block to import custom meshes
and control vehicle lights.

1-11

To Action
Import
custom
meshes

1 Install the Automated Driving Toolbox Interface for Unreal Engine® 4 Projects
support package. See “Install Support Package for Customizing Scenes”.

2 On the block Parameters tab, set Type to Custom.
3 In the Path to custom mesh field, enter the path to the vehicle mesh in the

Unreal Engine project. For example, enter /MathWorksSimulation/Vehicles/
Muscle/Meshes/SK_MuscleCar.SK_MuscleCar.

To create a custom vehicle mesh, see “Prepare Custom Vehicle Mesh for the
Unreal Editor”.

4 Use the vehicle dimensions in the custom mesh to enter the dimensions in the
corresponding block parameter fields.

Control
vehicle lights

1 Install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects
support package. See “Install Support Package for Customizing Scenes”.

2 On the block Light Controls tab, select Enable light controls.
3 Use the enabled parameters to specify the vehicle lights for:

• Headlights
• Brake lights
• Reverse lights
• Turn signal lights

4 Connect Boolean light control signals to the Signal lights input port.

Unreal Engine Scene Environment: Control weather and sun position
Use the Simulation 3D Scene Configuration block to control scene weather and sun position. Options
allow you to create realistic environments when you run maneuvers and test control algorithms in the
Unreal Engine 3D simulation environment. The Simulation 3D Camera and Simulation 3D Fisheye
Camera blocks receive the image from the 3D simulation environment.

To control scene weather and sun position, on the Simulation 3D Scene Configuration block Weather
tab, select Override scene weather. Use the enabled parameters to change the sun position, clouds,
fog, and rain during the simulation.

Bird's-Eye View Example: Create a 360° bird's-eye-view image around
a vehicle
The “Create 360° Bird's-Eye-View Image Around a Vehicle” example shows how to create a 360°
bird's-eye-view image around a vehicle for use in a surround view monitoring system.

Radar and Tracking Examples: Process radar multipath detections,
simulate radar ghosts from multipath detections, and fuse lidar and
radar tracks in Simulink
The “Simulate Radar Ghosts due to Multipath Return” example shows how to generate ghost targets
that occur when signal energy is reflected off another target before returning to the radar. This
example requires the Radar Toolbox software.

R2021a

1-12

The “Highway Vehicle Tracking with Multipath Radar Reflections” example shows how to assess and
mitigate the impact of multipath radar reflections when you track highway vehicles using an
extended object tracker. This example requires the Sensor Fusion and Tracking Toolbox™ and Radar
Toolbox software.

The “Track-Level Fusion of Radar and Lidar Data in Simulink” example shows how to fuse tracks
obtained by radar and lidar sensor measurements in Simulink. This example requires the Sensor
Fusion and Tracking Toolbox and Lidar Toolbox software. It closely follows the “Track-Level Fusion of
Radar and Lidar Data” example.

Localization and Mapping Examples: Build an occupancy map from
lidar data using SLAM, develop a stereo visual SLAM algorithm, and
perform localization using HD map traffic data
The “Build Occupancy Map from 3-D Lidar Data Using SLAM” example demonstrates how to build a
2-D occupancy map from 3-D lidar data using a simultaneous localization and mapping (SLAM)
algorithm.

The “Develop Visual SLAM Algorithm Using Unreal Engine Simulation” example now shows how to
develop a stereo visual SLAM algorithm. This algorithm measures depth information more accurately
than the monocular visual SLAM algorithm.

The “Localization Correction Using Traffic Sign Data from HERE HD Maps” example shows how to
use traffic sign data from the HERE HD Live Map service to correct GPS measurements collected by
an autonomous vehicle.

Motion Planning Example: Plan a path through an urban environment
using a dynamic occupancy grid map
The “Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map” example shows
how to perform dynamic replanning in an urban driving scene by using a grid-based tracker. The
estimated occupancy map is used for replanning of a Frenet reference path. This example requires
the Sensor Fusion and Tracking Toolbox and Navigation Toolbox™ software.

Automated Driving Reference Applications: Examples on vehicle
sensor fusion, and code generation of vehicle detector, lane following
controller, and lane change planner
The “Forward Vehicle Sensor Fusion” example shows how to implement sensor fusion and tracking
from a camera and a radar sensor. You can test the sensor fusion and tracking algorithm using
different prebuilt scenarios in a 3D simulation environment that uses the Unreal Engine from Epic
Games®.

The “Surround Vehicle Sensor Fusion” example shows how to implement sensor fusion and tracking
from multiple vision and radar sensors that provide 360-degree coverage surrounding an ego vehicle
for highway lane change maneuvers.

The “Generate Code for Vision Vehicle Detector” example shows how to test and generate deployable
code for a vehicle detector. The example demonstrates two variants of vehicle detector implemented
using an aggregate channel features (ACF) object detector and a pretrained you-only-look-once

1-13

(YOLO) v2 network. You can generate C++ code for the ACF object detector and CUDA code for the
YOLOv2 network.

The “Generate Code for Highway Lane Following Controller” example shows how to test a highway
lane following controller component using ground truth information. This example generates C++
code for the controller and validates the functional equivalence using software-in-the-loop (SIL)
simulation.

The “Generate Code for Highway Lane Change Planner” example shows how to design and test a lane
change planner component for a highway lane change application. The example also shows how to
generate C++ code, and assess functionality using software-in-the-loop (SIL) simulation.

The “Automate Testing for Lane Marker Detector” example shows how to automate the testing of a
lane marker detector component and verify the generated code using Simulink Test™ software.

The “Automate Testing for Highway Lane Following Controls and Sensor Fusion” example integrates
sensor fusion and control components of a highway lane following system. The example shows how to
automate the testing of this component assembly and verify the generated code using Simulink Test
software.

Functionality being removed or changed
hereHDLMConfiguration(region) syntax has been removed
Errors

In hereHDLMConfiguration objects, the syntax for configuring a hereHDLMReader object to
search catalogs from a specific region, hereHDLMConfiguration(region), has been removed.
Instead, specify the catalog name that corresponds to that region by using the
hereHDLMConfiguration(catalog) syntax.

Previously, the catalog names for regions such as North America were not available to customers.
HERE Technologies now makes these catalog names available through the HERE HD Live Map
Marketplace, making the region syntax unnecessary.
Update Code

This table shows a typical usage of the hereHDLMConfiguration(region) syntax, and shows how
to update that code using the hereHDLMConfiguration(catalog) syntax.

Discouraged Usage Recommended Replacement
catalog = hereHDLMConfiguration('North America') catalog = hereHDLMConfiguration(...

'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2')

radarDetectionGenerator System object and Radar Detection Generator block are not
recommended
Still runs

The radarDetectionGenerator System object and Radar Detection Generator block are not
recommended unless you require C/C++ code generation. Instead, use the
drivingRadarDataGenerator System object and Driving Radar Data Generator, respectively.
These new radar sensors provide additional properties for modeling radar sensors, including the
ability to generate tracks and clustered detections.

There are no current plans to remove the radarDetectionGenerator System object or Radar
Detection Generator block. MATLAB code and Simulink models that use these features will continue

R2021a

1-14

to run. You can still import radarDetectionGenerator objects into the Driving Scenario
Designer app. However, the app updates the parameters of the imported sensor to reflect the
parameters of a drivingRadarDataGenerator object. In addition, when you export a scenario
containing a radarDetectionGenerator sensor to MATLAB code or to a Simulink model, the app
exports the sensor as a drivingRadarDataGenerator object or Driving Radar Data Generator
block, respectively.

Update Code

In MATLAB code, replace all instances of radarDetectionGenerator with
drivingRadarDataGenerator. In addition, update all radarDetectionGenerator properties
with their equivalent drivingRadarDataGenerator properties, as shown in the table. The
properties not listed in the table are either specific only to drivingRadarDataGenerator or
identical in both objects.

radarDetectionGenerator Properties Equivalent drivingRadarDataGenerator
Properties

UpdateInterval UpdateRate
SensorLocation

Height

MountingLocation

Yaw

Pitch

Roll

MountingAccuracy

MaxRange RangeLimits
MaxNumDetectionsSource MaxNumReportsSource
MaxNumDetections MaxNumReports
ActorProfiles Profiles

This table shows sample code for creating a drivingRadarDataGenerator object instead of a
radarDetectionGenerator object.

Discouraged Usage Recommended Replacement
 radar = radarDetectionGenerator(...
 'SensorLocation',[-1 0], ...
 'Height',0.2, ...
 'Yaw',180, ...
 'Pitch',0, ...
 'Roll',0, ...
 'MaxRange',50);

 radar = drivingRadarDataGenerator(...
 'MountingLocation',[-1 0 0.2], ...
 'MountingAngles',[180 0 0], ...
 'RangeLimits',[0 50]);

To generate detections from actor poses at each simulation time step, replace the dets =
radarDetectionGenerator(targets,time) syntax with dets =
drivingRadarDataGenerator(targets,time).

Update Models

In Simulink models, replace all Radar Detection Generator blocks with Driving Radar Data Generator
blocks. In the Driving Radar Data Generator blocks, update the parameter values in the same way

1-15

you would update the drivingRadarDataGenerator property values described in the “Update
Code” on page 1-15 section.

If your model contains a separate block that clusters detections, you can remove it because the
Driving Radar Data Generator block clusters detections by default.

For example, in this model, the Sensor Simulation subsystem outputs concatenated detections from
Radar Detection Generator blocks into a separate block that clusters the detections.

In this model, the Sensor Simulation subsystem outputs concatenated, clustered detections from
Driving Radar Data Generator blocks directly into the next part of the model pipeline.

R2021a

1-16

R2020b

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

2

Reverse Motion in Driving Scenarios: Simulate driving maneuvers
such as backing into parking spots
In the Driving Scenario Designer app, you can now specify reverse motions for actors in a driving
scenario. Previously, the app supported only forward motions. Use reverse motion to simulate
advanced driving maneuvers such as backing into a parking spot or completing a three-point turn.

To test reverse motion algorithms, you can use the Reverse_AEB scenarios described in Euro NCAP
Driving Scenarios in Driving Scenario Designer. To learn how to create your own reverse motion
scenarios, see the Create Reverse Motion Driving Scenarios Interactively example.

To simulate reverse motions in programmatic driving scenarios, specify negative speeds for actors in
the trajectory function.

OpenStreetMap Roads: Create driving scenarios using road data
imported from the OpenStreetMap web service
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the OpenStreetMap® web service.

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/create-reverse-motion-driving-scenarios-interactively.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

For more details, see Import OpenStreetMap Data into Driving Scenario.

You can also import these roads into a drivingScenario object by using the 'OpenStreetMap'
syntax of the roadNetwork function.

OpenDRIVE Export: Share a driving scenario using the OpenDRIVE
format
Use the export function with a drivingScenario object to programmatically export a driving
scenario to OpenDRIVE format.

In the Driving Scenario Designer app, select the OpenDRIVE File menu item in the Export menu
to export the driving scenario to OpenDRIVE format.

2-3

https://www.mathworks.com/help/releases/R2020b/driving/ug/import-openstreetmap-data-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.export.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

Localization Examples: Develop lidar and visual SLAM algorithms for
navigation using the Unreal Engine simulation environment
The Lidar Localization with Unreal Engine Simulation example shows how to develop and evaluate a
lidar localization algorithm using synthetic lidar data.

The Develop Visual SLAM Algorithm Using Unreal Engine Simulation example shows how to develop
a visual simultaneous localization and mapping (SLAM) algorithm using synthetic image data.

Both examples generate synthetic data from the Unreal Engine simulation environment.

Simulation 3D Vision Detection Generator Block: Generate synthetic
object and lane boundary detections from the Unreal Engine
simulation environment
The Simulation 3D Vision Detection Generator block models a synthetic vision sensor and generates
object and lane boundary detections from a simulation environment. This environment is rendered
using the Unreal Engine from Epic Games. The block includes parameters for modeling detection
accuracy, measurement noise, and camera intrinsics.

Lidar Sensor Model Extensions: Generate synthetic point clouds from
scenarios in Driving Scenario Designer app and in Simulink
In the Driving Scenario Designer app, you can now model a lidar sensor and generate synthetic
point cloud data from a driving scenario.

R2020b

2-4

https://www.mathworks.com/help/releases/R2020b/driving/ug/lidar-localization-with-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/develop-visual-slam-algorithm-using-unreal-engine-simulation.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/simulation3dvisiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

This sensor obtains data from mesh representations of the roads and actors within the scenario.

When you export a scenario containing a lidar sensor to MATLAB, the sensor is represented as a
lidarPointCloudGenerator System object (introduced in R2020a).

2-5

https://www.mathworks.com/help/releases/R2020b/driving/ref/lidarpointcloudgenerator-system-object.html

When you export a scenario containing a lidar sensor to Simulink, the sensor in represented as a
Lidar Point Cloud Generator block (introduced in R2020b).

Driving Scenario Enhancements: Rotate actors interactively, specify
yaw angles with trajectories, and additional features
When creating cuboid driving scenarios using the drivingScenario object or the Driving
Scenario Designer app, you can now use these features.

Interactive Actor Rotation

In the Driving Scenario Designer app, you can now rotate actors interactively. Previously, to rotate
an actor, you needed to specify the Yaw value on the Actors tab for the selected actor. To rotate
actors interactively, on the Scenario Canvas, pause your pointer on an actor and move the actor
rotation widget in the desired direction.

Yaw Angles for Actor Trajectories

In the Driving Scenario Designer app and the trajectory function used with drivingScenario
objects, you can now specify yaw angles for actor trajectories. Specifying yaw angles as a constraint
on trajectories enables finer control over actor motions. For example, you can specify more precise
motions for vehicles in parking scenarios or specify pedestrians to turn at 90-degree angles.

R2020b

2-6

https://www.mathworks.com/help/releases/R2020b/driving/ref/lidarpointcloudgenerator.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html

For sample scenarios with specified yaw constraints, see the AEB_PedestrianTurning scenarios
described in Euro NCAP Driving Scenarios in Driving Scenario Designer.

Actor Spawn and Despawn

You can now add or remove actors dynamically from a driving scenario during simulation.

In the Driving Scenario Designer app and the actor function used with drivingScenario
objects, you can specify these options:

• Entry time for actors to spawn (appear) in the scenario during simulation
• Exit time for actors to despawn (disappear) from the scenario during simulation

Mesh Plotter in Bird's-Eye Plot

In the birdsEyePlot object, you can now plot the meshes for actors in a driving scenario. To plot
actor meshes:

2-7

https://www.mathworks.com/help/releases/R2020b/driving/ug/euro-ncap-driving-scenarios-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.html

1 Use the targetMeshes function to obtain the faces, vertices, and color of target actors that are
relative to a specific actor.

2 Create a meshPlotter object to configure the display of the meshes.
3 Use this plotter with the plotMesh function to display the faces, vertices, and color of each actor

mesh.

Ego Vehicle Indicator

In the Driving Scenario Designer app, you can now add a visual indicator around the ego vehicle in
a driving scenario. Use this option to identify the ego vehicle in simulations containing multiple
actors.

You can also add this visual indicator to actors in driving scenarios created using a
drivingScenario object. In the plot function used with this object, specify the
'ActorIndicators' name-value pair with the ActorID values of the actors around which you want
to draw the indicator.

Actor Pose Indicator

On the Scenario Canvas of the Driving Scenario Designer app, when you select an actor or pause
your pointer on it, a triangle indicating the pose (position and orientation) of the actor is displayed at
the actor origin.

R2020b

2-8

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.targetmeshes.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.meshplotter.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/birdseyeplot.plotmesh.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.plot.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html

You can optionally display this pose indicator during simulation, which is useful for visualizing a
scenario with some vehicles moving forward and others moving in reverse.

Target Poses in Specified Range

The targetPoses function can optionally return poses that are within only a specified range of the
ego vehicle. By generating poses that are only within the maximum detection range of the ego vehicle
sensors, you can improve driving scenario performance. The generation of target poses in a specified
range is not supported in the Driving Scenario Designer app.

Named Roads and Actors

In the road, actor, and vehicle functions, the 'Name' name-value pair argument enables you to
specify a name for created roads and actors. The roadNetwork function uses this name-value pair to
import the names of OpenDRIVE, HERE HD Live Map, or OpenStreetMap roads.

Road Object

The road function can optionally return a Road object that contains the properties of the created
road, such as its road centers and banking angle. These properties are read-only.

HERE HD Live Map Marketplace Support: Read and visualize high-
definition map data from the HERE HD Live Map Marketplace service
The HERE HD Live Map features—the hereHDLMReader object and map import in driving scenarios
—now obtain map data from the Marketplace service provided by HERE Technologies. Previously,
these features obtained map data from the DataStore service and required you to enter an App ID
and App Code as credentials. To access HERE HD Live Map data from the Marketplace service, you
must enter your Marketplace credentials, which consist of an Access Key ID and Access Key Secret.

2-9

https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.targetposes.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html

Compatibility Considerations
HERE HD Live Map features no longer support DataStore credentials (App ID and App Code). In
addition, the data obtained from the Marketplace catalogs might differ from the data in the DataStore
catalogs. The hereHDLMConfiguration object has been updated to configure hereHDLMReader
objects to read data from Marketplace catalogs only.

HERE HD Live Map Localization Layers: Read localization data such as
barriers, signs, and poles from a road network
The hereHDLMReader object now supports reading localization map layers from the HD Localization
Model of the HERE HD Live Map (HDLM) service. Use these layers to obtain information about
objects along the road, such as roadside barriers, traffic signs, and poles alongside and over the road.
Previously, the object supported reading data from only road and lane layers. Localization data for
obstacles along the road is not supported.

Labeler Enhancements: Label objects in images and video using
projected 3-D bounding boxes, load custom image formats, use
additional keyboard shortcuts, and more
This table describes enhancements for these labeling apps:

• Image Labeler
• Video Labeler
• Ground Truth Labeler
• Lidar Labeler — Introduced in R2020b

Enhancement Image Labeler Video Labeler Ground Truth
Labeler

Lidar Labeler

Load images with
custom image
formats using an
imageDatastore
object

Supported Not supported Not supported Not supported

Draw projected 3-
D bounding boxes
around objects in
images and video
using the projected
cuboid label type

Supported Supported Supported Not supported

Delete pixel labels Supported Supported Supported Not supported
Undo and redo
drawing a pixel
label an increased
number of times

Supported Supported Supported Not supported

R2020b

2-10

https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2020b/lidar/ref/lidarlabeler-app.html

Enhancement Image Labeler Video Labeler Ground Truth
Labeler

Lidar Labeler

Use keyboard
shortcuts for
selecting drawn
labels and resizing
bounding boxes

Supported Supported Supported Not supported

Specify attributes
for cuboid ROI
labels

Not supported Not supported Supported Supported

Visualize point
cloud clusters
across all frames,
not just individual
frames, when
Snap to Cluster
option is selected,
by using a new
Cluster Settings
option

Not supported Not supported Supported Supported

Use keyboard
shortcuts for
panning across the
point cloud frame
and moving
multiple selected
cuboids

Not supported Not supported Supported Supported

Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and
roll with improved camera controls and other usability improvements
The camera views in the Unreal Engine simulation environment include these usability
improvements.

Smooth Transition Between Views

Press the keyboard keys 0–9 to transition smoothly between vehicle camera views.

2-11

Cycle Through Vehicles in Scene

Press the Tab key to cycle the view between all vehicles in the scene.

Vehicle Acceleration and Rotation

Press the L key to toggle a camera lag effect on and off. When you enable the lag effect, the camera
view includes:

• Position lag, based on the translational acceleration of the vehicle
• Rotation lag, based on the rotational velocity of the vehicle

This view provides for improved visualization of overall vehicle acceleration and rotation.

R2020b

2-12

Vehicle Pitch and Roll

The views now lock the camera pitch and roll to the horizon, providing improved visualization of the
vehicle pitch and roll.

Camera Distance

Use the mouse scroll wheel to control the camera distance from the vehicle.

2-13

Free-Camera Views

Press the F key to toggle the free camera mode on and off. When you enable the free camera mode,
you can use the mouse to change the pitch and yaw of the camera. This mode enables you to orbit the
camera around the vehicle.

Tracking Examples: Perform grid-based tracking, track multiple lane
boundaries, and generate code for track-level fusion
The Grid-based Tracking in Urban Environments Using Multiple Lidars example shows how to track
moving objects by using multiple lidar sensors and a grid-based tracker.

The Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker example shows how to
design and test a multiple-lane tracking algorithm by using lane detections obtained by a probabilistic
camera in a driving scenario.

The Generate Code for a Track Fuser with Heterogeneous Source Tracks example shows how to
generate code for a track-level fusion algorithm where tracks originate from heterogeneous sources
with different state definitions.

These examples require the Sensor Fusion and Tracking Toolbox software.

Trajectory Planning Example: Plan a vehicle trajectory through
highway traffic
The Highway Trajectory Planning Using Frenet Reference Path example shows how to plan a local
trajectory in a highway driving scenario. This example uses a reference path and dynamic list of
obstacles to generate alternative trajectories for an ego vehicle.

This example requires the Navigation Toolbox software.

Scenario Generation Example: Automate scenario generation for
driving applications
The Automatic Scenario Generation example shows how to automate scenario generation by using a
set of start and goal positions specified for vehicles in a driving scenario. This example automatically

R2020b

2-14

https://www.mathworks.com/help/releases/R2020b/driving/ug/grid-based-tracking-in-urban-environments-using-multiple-lidars.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/track-multiple-lane-boundaries-with-a-global-nearest-neighbor-tracker.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/generate-code-for-a-track-fuser-with-heterogeneous-source-tracks.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/hiighway-trajectory-planning-using-frenet-reference-path.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/automatic-scenario-generation.html

generates random trajectories and adjusts the speed profile of each vehicle to synthesize a collision-
free scenario. Use this example to create random driving scenarios for testing automated driving
algorithms.

Automated Driving Reference Applications: Lane following with
intelligent vehicles, lane following with RoadRunner scenes, traffic
light negotiation with Unreal Engine, and code generation for lane
marker detection
The Highway Lane Following with Intelligent Vehicles example shows how to test highway lane
following in a scenario with intelligent target vehicles. The example configures the non-ego vehicles
as intelligent target vehicles such that they perform velocity keeping, lane change, or lane following.
Then, it tests the lane following application for an ego vehicle with respect to the changing behaviour
of non-ego vehicles.

The Highway Lane Following with RoadRunner Scene shows how to test lane following application on
a scene created using the RoadRunner scene editing software.

The Traffic Light Negotiation with Unreal Engine Visualization example shows how to design a
decision logic for negotiating a traffic light at an intersection and test on prebuilt scenarios in 3D
simulation environments that uses Unreal Engine.

The Generate Code for Lane Marker Detector example show hows to test a lane marker detector
algorithm on prebuilt scenarios in a 3D simulation environment and generate C++ code of the
detector model for real-time application. This 3D simulation environment is rendered using the
Unreal Engine from Epic Games

Driving Scenario Performance: Improved performance when
simulating scenarios with large numbers of actors
The drivingScenario object and Driving Scenario Designer app have been redesigned for
improved performance when simulating scenarios that contain a large number of actors. For example,
this code generates a scenario with 100 vehicle actors by using the vehicle function.

scenario = drivingScenario;
numRoads = 50; % 2 vehicles per road

for i = 1:numRoads
 y = 10*i;
 roadCenters = [100 y 0; -100 y 0];
 road(scenario,roadCenters);

 v1 = vehicle(scenario);
 trajectory(v1,roadCenters,25);

 v2 = vehicle(scenario);
 trajectory(v2,flipud(roadCenters),25);
end

When simulating this scenario by using the advance function, the simulation is about 3x faster than
in the previous release:

2-15

https://www.mathworks.com/help/releases/R2020b/driving/ug/highway-lane-following-with-intelligent-vehicles.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/highway-lane-following-with-roadrunner-scene.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/traffic-light-negotiation-with-unreal-engine-visualization.html
https://www.mathworks.com/help/releases/R2020b/driving/ug/generate-code-for-lane-marker-detector.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/drivingscenario.advance.html

plot(scenario)
while advance(scenario)
end

For each call to the advance function, the approximate execution times are:

R2020a: 0.039s

R2020b: 0.014s

The simulation was timed on a Windows 10, Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz test
system by using the timeit function:

timeit(@() advance(scenario))

Functionality being removed or changed
hereHDLMConfiguration(region) syntax will be removed
Warns

In hereHDLMConfiguration objects, the syntax for configuring a hereHDLMReader object to
search catalogs from a specific region, hereHDLMConfiguration(region), will be removed in a
future release. Instead, specify the catalog name that corresponds to that region by using the
hereHDLMConfiguration(catalog) syntax.

Previously, the catalog names for regions such as North America were not available to customers.
HERE Technologies now makes these catalog names available through the HERE HD Live Map
Marketplace, making the region syntax unnecessary.
Update Code

The table shows a typical usage of the hereHDLMConfiguration(region) syntax. It also shows
how to update your code using the hereHDLMConfiguration(catalog) syntax.

Discouraged Usage Recommended Replacement
catalog = hereHDLMConfiguration('North America') catalog = hereHDLMConfiguration(...

'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2')

InflationRadius and VehicleDimensions properties of vehicleCostmap object have been
removed
Errors

The InflationRadius and VehicleDimensions properties of the vehicleCostmap object have
been removed. Follow this process instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the InflationRadius and VehicleDimensions properties.

2 Specify this object as the value of the CollisionChecker property of the vehicleCostmap
object.

If you do specify these properties for vehicleCostmap, the object returns an error.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides

R2020b

2-16

https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/driving.costmap.inflationcollisionchecker.html

additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to compute the inflation radius, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code by using the corresponding properties of
an InflationCollisionChecker object.

Invalid Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

vehicleDetectorFasterRCNN function now uses MobileNet-v2 network architecture and does
not require type of vehicle detector model as input
Behavior change in future release

The vehicleDetectorFasterRCNN function now uses a modified version of the MobileNet-v2
convolutional neural network (CNN) as the base network for vehicle detector.

Previously, the vehicleDetectorFasterRCNN function enabled you to specify the type of vehicle
detector model, modelName, as an input for vehicle detection. The valid modelName values were:
'full-view' or 'front-rear-view', which specified models that were trained on different views
of vehicle images.

The vehicleDetectorFasterRCNN function now uses a generic vehicle detector that works for test
images containing any of these vehicle views: front, rear, left, or right.

Update Code

The table shows a typical usage of the modelName input argument of the
vehicleDetectorFasterRCNN function. It also shows how to update your code by removing the
input argument modelName.

Discouraged Usage Recommended Replacement
modelName = 'front-rear-view'
detector = vehicleDetectorFasterRCNN(modelName);

detector = vehicleDetectorFasterRCNN;

2-17

https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2020b/driving/ref/vehicledetectorfasterrcnn.html

R2020a

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

3

Multisignal Ground Truth Labeling: Label multiple lidar and video
signals simultaneously
In the Ground Truth Labeler app, you can now label multiple signals representing the same scene
within one app session.

Previously, you had to label each signal in separate sessions. With multisignal labeling, you can:

• Load multiple signal types, including lidar point cloud signals. Previously the app supported only
image-based signals, which include videos and image sequences. You can now load signals
individually or load a collection of signals from a single source, such as a rosbag. You can also
create a custom reader for your own data source by using the
vision.labeler.loading.MultiSignalSource API.

• Label signals that display a scene at the same timestamp within a single frame. You can also now
label lidar signals by using the cuboid ROI label type. Cuboids are boxes that you draw around
regions of interest within a lidar point cloud.

• Export labeled ground truth data across all signals within a groundTruthMultisignal object.
Using this object, you can select labels by group name, signal name, signal type, label name, or
label type. In addition, by using the gatherLabelData function, you can gather relevant data
across multiple signals to train object detectors or semantic segmentation networks.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/vision.labeler.loading.multisignalsource-class.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthmultisignal.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthmultisignal.gatherlabeldata.html

You can also create label definitions programmatically by using a
labelDefinitionCreatorMultisignal object. You can then import these label definitions into
the app.

To get started labeling multiple signals, see Get Started with the Ground Truth Labeler.

Compatibility Considerations
If you open an app session that was created in a previous release, the session continues to run.
However, the app now exports data as a groundTruthMultisignal object instead of a
groundTruth object. If you do not need to label multiple signals simultaneously and do not require
lidar labeling, use the Video Labeler app in Computer Vision Toolbox™ instead. The Video Labeler
app continues to export groundTruth objects that were saved from the Ground Truth Labeler app
in a previous release.

Lidar Labeling: Label lidar point clouds to train deep learning models
In the Ground Truth Labeler app, you can now label lidar point clouds. Previously, the app
supported labeling of videos and image sequences only. To label lidar data, use the cuboid ROI label
type. Cuboids are boxes that you draw around regions of interest within a lidar point cloud.

You can label lidar point clouds from these data sources:

• Point cloud sequences that are stored as point cloud data (PCD) or polygon (PLY) files
• Velodyne® packet capture (PCAP) files
• Rosbags (requires ROS Toolbox)

You can use the labeled lidar data as training data for deep learning models, such as object detectors.

3-3

https://www.mathworks.com/help/releases/R2020a/driving/ref/labeldefinitioncreatormultisignal.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/get-started-with-the-ground-truth-labeler.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/groundtruth.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html

For more details on lidar labeling, see Label Lidar Point Clouds for Object Detection.

3D Scene Customization: Simulate driving scenarios in a 3D
environment using scenes created in the Unreal Editor
The Simulation 3D Scene Configuration block now provides options for simulating driving scenarios
and sensors within your own customized scenes. Previously, the block enabled you to simulate only
within a set of prebuilt scenes. The customized scenes must have been created using the Unreal
Editor and must be compatible with Version 4.23. Using custom scenes, you can:

• Simulate vehicles and sensors from your Simulink model directly in the Unreal® Editor. Use this
option to quickly modify your scene based on simulation results.

• Package scenes into an executable file and simulate from them by using the Simulation 3D Scene
Configuration block. Use this option to speed up performance and to simulate in custom scenes
without having to open the Unreal Editor.

To use custom scenes, you must install the Automated Driving Toolbox Interface for Unreal Engine 4
Projects. This support package includes a plugin that establishes a connection between the Unreal
Editor and MATLAB. It also includes customizable versions of the prebuilt 3D scenes that you can
select from the Simulation 3D Scene Configuration block, with the exception of the Virtual Mcity
scene.

Scene customization is available on Windows® 64-bit platforms only and requires Visual Studio® 2017
or higher.

For more details on scene customization, see Customize 3D Scenes for Automated Driving.

Lidar Sensor Model: Generate synthetic point clouds from
programmatic driving scenarios
Use the lidarPointCloudGenerator System object to model a lidar sensor and generate synthetic
point cloud data for actors in a drivingScenario object.

The lidarPointCloudGenerator object obtains data from mesh representations of the roads and
actors within the scenario.

• To obtain the road mesh for the road on which the ego vehicle travels, use the roadMesh function.
• To obtain the meshes of actors within the scenario, use the actorProfiles function. This

function now additionally returns mesh properties. Actor and Vehicle objects also now contain
mesh properties.

To define your own actor meshes, use the extendedObjectMeshextendedObjectMesh function or
use one of these prebuilt meshes as a starting point:

• driving.scenario.carMesh
• driving.scenario.truckMesh
• driving.scenario.bicycleMesh
• driving.scenario.pedestrianMesh

To visualize actor meshes on a bird's-eye plot, create a pointCloudPlotter object, and then plot
the point cloud by using the plotPointCloud function.

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/driving/ug/label-lidar-point-clouds-for-object-detection.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/customize-3d-scenes-for-automated-driving.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/lidarpointcloudgenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/roadmesh.roadmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.actorprofiles.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/extendedobjectmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.carmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.truckmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.bicyclemesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.driving.scenario.pedestrianmesh.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/pointcloudplotter.pointcloudplotter.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/plotpointcloud.plotpointcloud.html

For an example that shows how to fuse these synthetic point clouds with synthetic radar detections
obtained from a radarDetectionGenerator System object, see the Track-Level Fusion of Radar
and Lidar Data example

Bird's-Eye Scope Enhancements: Visualize radar and lidar data from
3D simulation sensors, and visualize actors from custom blocks
In the Bird's-Eye Scope, you can now visualize sensor data obtained from the 3D simulation
environment, which is rendered using the Unreal Engine from Epic Games. You can visualize sensor
coverage areas and detections from Simulation 3D Probabilistic Radar and Simulation 3D Lidar
blocks. For more details about visualizing data from these sensors, see Visualize 3D Simulation
Sensor Coverages and Detections

The scope also now visualizes actors from any blocks that create buses containing actor poses.
Previously, the scope visualized actors output by the Scenario Reader block only. For details on the
actor pose information required when creating these buses, see the Actors output port of the
Scenario Reader block.

3-5

https://www.mathworks.com/help/releases/R2020a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/birdseyescope-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dprobabilisticradar.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dlidar.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html#mw_8f64f730-b9b2-40ac-8d77-e7d0f33fe6b5

HERE HD Live Map Roads in Scenarios: Create driving scenarios using
imported road data from high-definition geographic maps
In the Driving Scenario Designer app, you can now generate a road network with data obtained
from the HERE HD Live Map2 web service, provided by HERE Technologies.

For more details, see Import HERE HD Live Map Roads into Driving Scenario.

You can also import these roads into a drivingScenario object by using the 'HEREHDLiveMap'
syntaxes in the roadNetwork function.

Scenario Coordinate Transformation Blocks: Convert between vehicle
and world coordinates in driving scenarios, and convert between
cuboid and 3D simulation coordinates
The Vehicle To World block converts non-ego actor poses from the coordinate system relative to the
ego vehicle to the world coordinates of a driving scenario.

The Cuboid To 3D Simulation block converts vehicles authored in the cuboid environment into the
coordinate system of the 3D simulation environment.

By using these two blocks together, you can take scenarios created in the Driving Scenario
Designer app and recreate them within the 3D simulation environment. To recreate these scenarios,
use this workflow.

2. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

R2020a

3-6

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/import-here-hd-live-map-roads-into-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/vehicletoworld.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/cuboidto3dsimulation.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.here.com

1 In the Driving Scenario Designer app, create a driving scenario. As a starting point, use one of
the prebuilt cuboid versions of 3D simulation environment scenes. For details, see Cuboid
Versions of 3D Simulation Scenes in Driving Scenario Designer.

2 In a Simulink model, read the ground truth data from the app scenario file by using a Scenario
Reader block. Configure the block to output the poses of both the ego vehicle and non-ego
vehicles.

3 Configure a Simulation 3D Scene Configuration block to display the 3D simulation scene that is
equivalent to the one you used in the app.

4 Convert the non-ego vehicle poses into world coordinates by using a Vehicle To World block.
5 Convert the ego and non-ego vehicle poses into the coordinate system of the 3D environment by

using Cuboid To 3D Simulation blocks. These blocks offset the positions of the vehicles to account
for the difference between origins in the two environments. In the cuboid environment, the origin
is underneath the center of the rear axle. In the 3D simulation environment, the origin is at the
approximate geometric center of the vehicle.

6 Specify the converted X, Y, and Yaw positions of all vehicles as the inputs to Simulation 3D
Vehicle with Ground Following blocks. Configure the blocks to recreate the cuboid scene, and
then simulate the model.

This block diagram shows a sample model of this workflow.

For an example that follows this workflow, see Visualize 3D Simulation Sensor Coverages and
Detections.

You can also convert non-ego vehicle poses from world coordinates to the coordinate system relative
to an ego vehicle by using the World To Vehicle block.

3-7

https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/worldtovehicle.html

In addition, if you are using drivingScenario objects to create scenarios, you can now perform the
programmatic equivalent of the Vehicle To World block conversion by using the
driving.scenario.targetsToScenario function.

3D Display for Cuboid Simulations: Visualize scenarios in a 3D
environment from the Driving Scenario Designer app
In the Driving Scenario Designer app, click 3D Display to visualize your cuboid scenario in a 3D
environment. The app renders this environment using the Unreal Engine from Epic Games.

You can also use this display as a preview of a scenario that you recreate for the 3D simulation
environment in Simulink. For an example, see Visualize 3D Simulation Sensor Coverages and
Detections.

Programmatic Sensor Import: Read programmatically created radar
and vision sensors into the Driving Scenario Designer app
You can now import programmatically created radar and vision sensors into the Driving Scenario
Designer app. The programmatic sensors must be created using radarDetectionGenerator and
visionDetectionGenerator objects. You can also generate these programmatic sensors by using
MATLAB code exported from the app.

The import of a lidarPointCloudGenerator System object into the app is not supported.

Custom Actor Colors: Specify the colors of actors in a driving scenario
In the Driving Scenario Designer app, you can now change the colors of actors in the scenario.

To change the color of an actor, next to the actor selection list, click the color patch for that actor.

R2020a

3-8

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/driving.scenario.targetstoscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/lidarpointcloudgenerator-system-object.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html

Then, use the color picker to select one of the standard colors commonly used in MATLAB graphics or
specify a custom color. You can also set a single default color for all newly created actors of a specific
class.

To set the plot display colors of actors in programmatic driving scenarios, use the PlotColor
property of Actor and Vehicle objects in a drivingScenario object. For details on setting this
property, see the 'PlotColor' name-value pair of the actor and vehicle functions.

Ego Vehicle Ground Following: Orient the ego vehicle to follow the
road surface elevation in closed-loop simulations
In the Scenario Reader block, select the Ego vehicle follows ground parameter to orient the ego
vehicle to follow the elevation of the road surface. The block updates the elevation, roll, pitch, and
yaw of the ego vehicle and outputs actors and lane boundaries relative to the updated ego vehicle
coordinates. Use this parameter in closed-loop simulations where the elevation of the road network
varies.

Rear-Facing Lane Detections: Detect lane boundaries from rear-facing
cameras in driving scenarios
In the Scenario Reader block, you can now output lane boundaries that are behind the ego vehicle. By
specifying these lane boundaries to a Vision Detection Generator block, you can generate synthetic
detections from rear-facing cameras mounted to the ego vehicle. For an example, see Test Open-Loop
ADAS Algorithm Using Driving Scenario.

To output these rear-facing lane boundaries, in the Scenario Reader block, specify negative distances
in the Distances from ego vehicle for computing boundaries (m) parameter. Previously, the
block computed only positive distances, which correspond to lane boundaries in front of the ego
vehicle.

You can also output lane boundaries in programmatic scenarios for use with
visionDetectionGenerator objects. In the laneBoundaries function, specify negative distances
in the 'XDistance' name-value pair.

Road Interactions in Scenarios: Control the ability to modify roads in
driving scenarios
In the Driving Scenario Designer app, when you import OpenDRIVE road networks or road data
from the HERE HD Live Map web service, the ability to modify roads is disabled by default. Disabling
these road interactions prevents you from accidentally modifying roads that are meant to match real-
world scenarios. The prebuilt scenarios that simulate the 3D simulation scenes also have road
interactions disabled. All other prebuilt scenarios and any scenarios that you create yourself have
road interactions enabled by default.

To turn on or off road interactions in the app, in the bottom-left corner of the Scenario Canvas pane,
first click the Configure the Scenario Canvas button . Then, select Enable road interactions or
Disable road interactions, respectively.

3-9

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.laneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html

Cuboid Versions of 3D Simulation Scenes: Build scenarios in the
Driving Scenario Designer app for use in a 3D simulation environment
The Driving Scenario Designer app now provides prebuilt scenarios that recreate scenes from a 3D
simulation environment. In these cuboid versions of the scenes, you can add vehicles, which are
represented as simple box shapes, and specify their trajectories. Then, you can simulate these
vehicles and trajectories in your Simulink model by using the higher fidelity 3D simulation versions of
the scenes. The 3D environment renders the scenes using the Unreal Engine from Epic Games.

For details on opening these scenes and on the scenes that are available, see Cuboid Versions of 3D
Simulation Scenes in Driving Scenario Designer.

For an example that shows how to use these scenes with a 3D simulation Simulink model, see
Visualize 3D Simulation Sensor Coverages and Detections.

laneMarking Function Enhancements: Define lane marking with
multiple marker styles
You can now use the laneMarking function to define multiple marker styles along a lane by
following these steps.

1 Create an array of lane marking objects with different marker types. Use the name-value pair
'SegmentRange' to specify the range for each marker type. For example, this code specifies a
lane marking with two marker types.

([laneMarking('Solid') laneMarking('Dashed')],'SegmentRange',[0.5 0.5]);
2 Pass the array as input to the laneMarking function. The function outputs a composite lane

marking object that contains the properties of different markers along the lane.

R2020a

3-10

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/cuboid-versions-of-3d-simulation-scenes-in-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/visualize-3d-simulation-sensor-coverages-and-detections.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/lanemarking.html

Example of Driving Scenario Using Composite Lane Marking for Passing Zones

trajectory Function Enhancements: Pause actors at a waypoint
The trajectory function now takes wait times as an input to pause actors at specific waypoints
along a trajectory. Use the waittime input argument of the trajectory function to generate stop-
and-go driving scenarios.

3-11

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.trajectory.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.trajectory.html

Example of Stop-and-Go Driving Scenario

Driving Scenario Designer App Enhancements: Add composite lane
markings and wait times
In the Driving Scenario Designer app, you can now:

• Add composite lane markings to a lane by specifying different markers along a lane.
• Add wait times to pause an actor at desired waypoints along its trajectory.

YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector
pretrained by a you-only-look-once (YOLO) v2 network
Use the vehicleDetectorYOLOv2 function to detect vehicles by using a pretrained YOLO v2 vehicle
detector.

SSD Object Detection: Detect objects in monocular camera images
using the single shot multibox detector (SSD) algorithm
The configureDetectorMonoCamera function can now configure a monocular camera to use the
SSD algorithm, returning an ssdObjectDetectorMonoCamera object.

R2020a

3-12

https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/vehicledetectoryolov2.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/ssdobjectdetectormonocamera.html

Quaternions: Represent orientation and rotations efficiently for
localization
The quaternion data type enables efficient representation of orientation and rotations. In
automated driving, sensors such as inertial measurement units (IMUs) report orientation readings as
quaternions. To use this data for localization, you can capture it in a quaternion object and convert
it to other rotation formats, such as Euler angles and rotation matrices. For more details on
quaternions, see Rotations, Orientations, and Quaternions for Automated Driving.

Geographic Coordinate Transformations: Convert between geographic
and local coordinates
Use the latlon2local function to convert geographic latitude-longitude coordinates to local (x, y)
coordinates. To convert local coordinates to geographic coordinates, use the local2latlon
function.

Multiroute Geographic Map Display: Simultaneously stream
geographic coordinates from multiple driving routes
The geoplayer object now supports the display of multiple driving routes. To control which route
remains visible in the plot, use the CenterOnID property.

Multiple-Object Tracking Enhancements: Initialize, confirm, and delete
tracks, and predict track states at specified times
In a multi-object tracker created using a multiObjectTracker System object, you can now perform
these actions.

• Manually initialize tracks in the tracker by using the initializeTrack function.
• Manually delete existing tracks from the tracker by using the deleteTrack function.
• Confirm or delete tracks based on recent track history by using the ConfirmationThreshold

and DeletionThreshold properties of the tracker. The tracker now uses the
trackHistoryLogic object to confirm or delete tracks.

• Predict tracks to specified times by using the predictTracksToTime function.

In addition, in MATLAB, the tracker now returns tracks as an array of objectTrack objects. When
generating C or C++ code using MATLAB Coder™, the tracker still returns tracks as an array of
structures, which was previously the only returned track format. However, the Time field of these
structures has been renamed to UpdateTime. This field corresponds to the UpdateTime property of
objectTrack objects.

These enhancements make the multiObjectTracker System object more closely aligned with the
trackers in Sensor Fusion and Tracking Toolbox, making it easier to switch between trackers in your
code.

Compatibility Considerations
As a result of these enhancements, the ConfirmationParameters and NumCoastingUpdates
properties are no longer recommended. Instead, use ConfirmationThreshold and

3-13

https://www.mathworks.com/help/releases/R2020a/driving/ref/quaternion.html
https://www.mathworks.com/help/releases/R2020a/driving/ug/rotations-using-quaternions-in-automated-driving.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/latlon2local.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/local2latlon.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/geoplayer.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.initializetrack.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.deletetrack.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/trackhistorylogic.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker.predicttrackstotime.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/objecttrack.html

DeletionThreshold, respectively. For details about updating your code to use the recommended
properties, “ConfirmationParameters and NumCoastingUpdates properties of the multiObjectTracker
System object are not recommended” on page 3-16.

If you are using a previous version of MATLAB, then the change in output track format has additional
compatibility considerations. For more details, see “Track output format of multiObjectTracker
changed” on page 3-17.

Track History Logic: Confirm and delete tracks based on recent track
history
The trackHistoryLogic object confirms or deletes tracks based on the recent track history.
Configure this object to manage the tracks of a multiObjectTracker System object.

Alpha-Beta Estimation Filter: Track objects using a linear motion and
measurement models
The trackingABF object is an alpha-beta tracking filter that follows a linear motion model and has a
linear measurement model. Linear motion is defined by constant velocity or constant acceleration.
Use this filter to predict the future location of an object, reduce noise for a detected location, and
help associate multiple objects with their tracks.

Ground Truth Labeler Enhancements: Rename scene labels, select ROI
color, and configure ROI label name display
In the Ground Truth Labeler app, you can now:

• Rename scene labels.
• Set custom colors for ROI labels.
• Configure ROI label names to always display, never display, or display only when you pause your

cursor over them.

Headless Mode: Run 3D simulations more quickly by not opening the
Unreal Engine visualization window
In the Simulation 3D Scene Configuration block, use the Display 3D window parameter to select
whether to display the 3D visualization window during simulation.

Consider running simulations without visualization, that is, in headless mode, in these cases.

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

• You want to capture sensor data to analyze in MATLAB but do not need to watch the visualization.

3D Simulation Version Upgrade: Run 3D simulations using Unreal
Engine, Version 4.23
The 3D visualization engine that comes installed with Automated Driving Toolbox has been updated to
Unreal Engine, Version 4.23. Previously, the toolbox used Unreal Engine, Version 4.19.

R2020a

3-14

https://www.mathworks.com/help/releases/R2020a/driving/ref/trackhistorylogic.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/trackingabf.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html

Compatibility Considerations
If your Simulink model uses a custom executable or project developed in a previous Unreal Engine
version, you must migrate that project or executable to version 4.23. For more details on migrating
projects or executables to newer Unreal Engine versions, see the Unreal Engine 4 documentation.

Box Truck Vehicle Type: Simulate vehicles with the dimensions of a
box truck in the 3D simulation environment
You can configure the Simulation 3D Vehicle with Ground Following block to implement a box truck in
3D simulations. To create vehicles of this type, set the Type parameter of the vehicle block to Box
truck. For box truck dimensions, see the Box Truck reference page.

Driving Scenarios: Improved performance when creating road
networks and actor trajectories
The drivingScenario object and Driving Scenario Designer app show improved performance
when creating roads or trajectories of more than 40 km and when creating road networks containing
approximately 500 roads or more. The table shows speed-ups of up to 75% when creating road
networks and up to 95% when creating actor trajectories.

Scenario R2019b R2020a
Single long road (~44 km) 24.1 s 5.73 s
Large road network (489 roads) 21.48 s 12.49 s
Single long actor trajectory
(~44 km)

10.08 s 0.43 s

Code Generation: Generate C/C++ code using MATLAB Coder
These objects and functions now support code generation.

• parabolicLaneBoundary
• findParabolicLaneBoundaries
• cubicLaneBoundary
• findCubicLaneBoundaries
• insertLaneBoundary
• computeBoundaryModel

Lidar SLAM Examples: Build a map from lidar data using a
simultaneous localization and mapping algorithm
The Build a Map from Lidar Data Using SLAM example shows how to process recorded lidar data to
build a map and estimate the trajectory of a vehicle by using a SLAM algorithm.

The Design Lidar SLAM Algorithm Using 3D Simulation Environment shows how to build a map using
synthetic lidar data recorded from a 3D simulation environment.

3-15

https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dvehiclewithgroundfollowing.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/boxtruck.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/paraboliclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findparaboliclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/cubiclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findcubiclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/paraboliclaneboundary.computeboundarymodel.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/build-a-map-from-lidar-data-using-slam.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/design-lidar-slam-algorithm-using-3d-simulation-environment.html

Tracking Examples: Fuse radar and lidar tracks, perform track-to-track
fusion in Simulink, and track vehicles using lidar in Simulink
The Track-Level Fusion of Radar and Lidar Data example shows how to fuse tracks obtained by radar
and lidar sensor measurements.

The Track-to-Track Fusion for Automotive Safety Applications in Simulink example shows how to
perform track-to-track level fusion by building a decentralized tracking architecture in Simulink.

The Track Vehicles Using Lidar Data in Simulink example shows the Simulink workflow for
processing lidar point cloud data and using that data to track vehicles.

These examples require the Sensor Fusion and Tracking Toolbox software.

Automated Driving Reference Applications: Simulate highway lane
following, highway lane change, and traffic light negotiation systems
The Highway Lane Following example shows how to simulate a highway lane-following application
that has controller, sensor fusion, and vision processing components. These components are tested in
a 3D simulation environment that includes camera and radar sensor models. To automate the testing
of these components and their generated code using Simulink Test software, see the Automate
Testing for Highway Lane Following example.

The Highway Lane Change example shows how to simulate an automated lane change maneuver
system for a highway driving scenario.

The Traffic Light Negotiation example shows how to design and test decision logic for negotiating a
traffic light at an intersection.

Functionality being removed or changed
ConfirmationParameters and NumCoastingUpdates properties of the multiObjectTracker
System object are not recommended
Still runs

The ConfirmationParameters and NumCoastingUpdates properties of the
multiObjectTracker System object are not recommended. Instead, use their corresponding
properties: ConfirmationThreshold and DeletionThreshold, respectively. These properties are
the same ones used in Sensor Fusion and Tracking Toolbox trackers, making it easier to switch
between trackers in your code.

There are no current plans to remove ConfirmationParameters and NumCoastingUpdates. If
you do specify these properties, the values in the corresponding ConfirmationThreshold and
DeletionThreshold properties are updated to match.

Update Code

The table shows a typical usage of the ConfirmationParameters and NumCoastingUpdates
properties, where you set the properties during creation by using name-value pairs. The table also
shows how to update your code by using the corresponding new properties.

R2020a

3-16

https://www.mathworks.com/help/releases/R2020a/driving/examples/track-level-fusion-of-radar-and-lidar-data.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-to-track-fusion-for-automotive-safety-applications-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/track-vehicles-using-lidar-data-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/lane-following-control-with-monocular-camera-perception.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/highway-lane-change.html
https://www.mathworks.com/help/releases/R2020a/driving/examples/traffic-light-negotiation.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html

Recommended Not Recommended
tracker = multiObjectTracker(...
 'ConfirmationParameters',[4 5], ...
 'NumCoastingUpdates',10);

tracker = multiObjectTracker(...
 'ConfirmationThreshold',[4 5], ...
 'Deletionthreshold',10);

Track output format of multiObjectTracker changed
Behavior change

Starting from R2020a, the track output format of multiObjectTracker changes from track
structure to objectTrack. As a result, when you load a multiObjectTracker created in an earlier
version of MATLAB, you need to release the tracker first so that it can allow objectTrack as the
track output format.

Renamed parameter in Simulation 3D Scene Configuration block
Behavior change

In the Simulation 3D Scene Configuration block, the Scene description parameter has been
renamed to Scene name. Use this parameter to simulate in one of the default, prebuilt scenes
provided with Automated Driving Toolbox. Starting in R2020a, to simulate in one of these scenes, you
must first set the Scene source parameter to Default Scenes, which is the default selection for
this parameter.

3-17

https://www.mathworks.com/help/releases/R2020a/driving/ref/multiobjecttracker-system-object.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/objecttrack.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/simulation3dsceneconfiguration.html

R2019b

Version: 3.0

New Features

Bug Fixes

Compatibility Considerations

4

3D Simulation: Develop, test, and verify driving algorithms in a 3D
simulation environment rendered using the Unreal Engine from Epic
Games
Automated Driving Toolbox provides a cosimulation framework for modeling driving algorithms in
Simulink and visualizing their performance in a 3D environment. This 3D simulation environment is
rendered using the Unreal Engine from Epic Games.

To use the provided 3D simulation blocks, open the Simulation 3D block library.

drivingsim3d

R2019b

4-2

Using these blocks, you can:

• Configure prebuilt scenes in the 3D simulation environment.
• Place and move vehicles within these scenes.
• Set up camera, radar, and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the vehicle.
• Obtain ground truth data for semantic segmentation and depth information.

Use 3D simulation to supplement real data when developing, testing, and verifying the performance
of automated driving algorithms. If you have a vehicle model, you can use sensor blocks to perform
realistic closed-loop simulations that encompass the entire automated driving stack, from perception
to control.

To get started, see these examples:

• Select Waypoints for 3D Simulation
• Design of Lane Marker Detector in 3D Simulation Environment
• Visualize Automated Parking Valet Using 3D Simulation
• Simulate Lidar Sensor Perception Algorithm

4-3

https://www.mathworks.com/help/releases/R2019b/driving/examples/select-waypoints-for-3d-simulation.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/design-of-lane-marker-detector-in-3d-simulation-environment.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/visualize-automated-parking-valet-using-3d-simulation.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/simulate-lidar-sensor-perception-algorithm.html

• Simulate Radar Sensors in 3D Environment

To learn more, see Unreal Engine Driving Scenario Simulation.

Note 3D simulation is supported on Windows only.

drivingScenario Import: Read programmatically created driving
scenarios into the Driving Scenario Designer app and Simulink
You can now import programmatically created driving scenarios into the Driving Scenario Designer
app or Simulink by using the Scenario Reader block. You can create programmatic driving scenarios
by generating a drivingScenario object from the app or specifying a drivingScenario object at
the MATLAB command line. These objects enable you to create multiple variations of scenarios. You
can then import these scenarios into the app or into Simulink and test your driving algorithm on
these variations. For more details, see Create Driving Scenario Variations Programmatically.

Driving Scenario Designer Export to Simulink: Generate Simulink
models of driving scenarios and sensors
You can now generate a Simulink model from a scenario developed using the Driving Scenario
Designer app. The generated models contain a Scenario Reader that reads roads and actors from the
scenario and sensor detections blocks that recreate the sensors defined in the app. For more details
on generating these blocks, see Generate Sensor Detection Blocks Using Driving Scenario Designer.

drivingScenario Enhancements: Create roads with driving, parking,
border, shoulder, and restricted lanes
Use the laneType function to define different lane types for roads in a driving scenario. You can
define driving, parking, border, shoulder, and restricted lanes. To create a driving scenario containing
roads with different types of lanes, follow these steps:

1 Define lane types by using the laneType function to create a lane type object.
2 Create lane specifications for a road by using the lanespec function. Add the lane type object to

lane specifications by using the 'Type' name-value pair of the lanespec function.
3 Add roads with specified lanes to the driving scenario by using the road function.

roadNetwork Enhancements: Import additional lane types of
OpenDRIVE roads into a driving scenario
You can now read and import parking, border, shoulder, and restricted lane types in an OpenDRIVE
road network into a driving scenario by using the roadNetwork function. Previously, only driving
lanes were supported. To show lane types in the driving scenario plot, use the 'ShowLaneTypes'
name-value pair of the roadNetwork function.

R2019b

4-4

https://www.mathworks.com/help/releases/R2019b/driving/examples/simulate-radar-sensors-in-3d-environment.html
https://www.mathworks.com/help/releases/R2019b/driving/unreal-engine-driving-scenario-simulation.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/create-driving-scenario-variations-programmatically.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/generate-sensor-detection-blocks-using-driving-scenario-designer.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/lanespec.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/lanespec.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/drivingscenario.roadnetwork.html

Bird's-Eye Scope World Coordinates View: Visualize scenarios in world
coordinates
Using the Bird's-Eye Scope, you can now view the ground truth of a scenario in world coordinates.
Previously, the scope displayed scenarios in vehicle coordinates only. You can simultaneously view
scenarios in both vehicle coordinates and world coordinates.

Velocity Profiler: Generate the velocity profile of a driving path given
kinematic constraints
The Velocity Profiler block generates a velocity profile of a driving path that satisfies a set of specified
kinematic constraints. These constraints include the physical limitations of the vehicle and comfort
criteria such as maximum allowable speed, maximum lateral acceleration, and maximum longitudinal
jerk.

You can use the generated velocity profile as the input reference velocities of a longitudinal
controller, as shown in the Automated Parking Valet in Simulink example.

For more details on using the Velocity Profiler block, see these examples:

• Velocity Profile of Straight Path
• Velocity Profile of Path with Curve and Direction Change

Ground Truth Labeling Enhancements: Copy and paste pixel labels,
improved pan and zoom, and improved frame navigation
With the Ground Truth Labeler app, you can now:

• Copy and paste pixel labels
• Pan and zoom more easily within the labeling window.
• Navigate to a specific frame by clicking on the scrubber or visual summary timeline

Lane Boundary Detection Algorithm: Automate the labeling of lane
boundaries using the Ground Truth Labeler
The Ground Truth Labeler app now includes a built-in algorithm for automating the labeling of lane
boundaries in a video or image sequence. Select this algorithm from the Automate Labeling section
of the app toolstrip.

Lidar Example: Build a map from lidar data
The Build a Map from Lidar Data example shows how to process 3-D lidar sensor data to
progressively build a map, with assistance from inertial measurement unit (IMU) readings. You can
use these built maps to plan paths for vehicle navigation or to perform localization. The example also
shows how to evaluate and improve the built maps using global positioning system (GPS) readings.

This example requires a Mapping Toolbox™ license.

4-5

https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyescope.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/velocityprofiler.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/automated-parking-valet-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/velocity-profile-of-straight-path.html
https://www.mathworks.com/help/releases/R2019b/driving/ug/velocity-profile-of-path-with-curve-and-direction-change.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2019b/driving/examples/build-a-map-from-lidar-data.html

Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to
increase automotive safety (requires Sensor Fusion and Tracking
Toolbox)
The Track-to-Track Fusion for Automotive Safety Applications example shows how to fuse tracks from
multiple vehicles to provide a more comprehensive estimate of the environment than can be seen by
either vehicle alone. This example requires a Sensor Fusion and Tracking Toolbox license.

HERE HD Live Map Linux Support: Read and visualize high-definition
map data on Linux machines
hereHDLMReader objects are now supported on Linux machines. The HERE HD Live Map service is
now supported on all platforms (Windows, Mac, and Linux®).

YOLO v2 Acceleration: Acceleration support for YOLO v2 object
detection
The detect function used with yolov2ObjectDetectorMonoCamera objects now supports
performance optimization in both CPU and GPU execution environments. To set the performance
optimization, use the 'Acceleration' name-value pair of the detect function.

Code Generation: Generate C/C++ code using MATLAB Coder
These objects and functions now support code generation:

• acfObjectDetectorMonoCamera
• birdsEyeView
• segmentLaneMarkerRidge

Functionality being removed or changed
InflationRadius and VehicleDimensions properties of vehicleCostmap object will be
removed
Warns

The InflationRadius and VehicleDimensions properties of vehicleCostmap objects will be
removed in a future release. Instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the properties InflationRadius and VehicleDimensions.

2 Specify this object as the value of the CollisionChecker property of vehicleCostmap.

If you do specify these properties for vehicleCostmap, the values in the corresponding properties of
CollisionChecker are updated to match.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to compute the inflation radius, enabling more precise collision checking.

R2019b

4-6

https://www.mathworks.com/help/releases/R2019b/driving/examples/track-to-track-fusion-for-automotive-safety-applications.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/yolov2objectdetector.detect.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/yolov2objectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/acfobjectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/segmentlanemarkerridge.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/driving.costmap.inflationcollisionchecker.html

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code by using the corresponding properties of
an InflationCollisionChecker object.

Discouraged Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

4-7

R2019a

Version: 2.0

New Features

Bug Fixes

5

HERE HD Live Map Reader: Read and visualize data from high-
definition maps designed for automated driving applications
Use the hereHDLMReader object to read road and lane network data from the HERE HD Live Map3

(HDLM) web service, provided by HERE Technologies. HERE HDLM content provides highly detailed
and accurate information about the vehicle environment and is suitable for applications such as
localization, scenario generation, navigation, and path planning.

To configure the reader object to read in map data from a specific catalog or version, use a
hereHDLMConfiguration object. To manage your HERE HDLM credentials, use the
hereHDLMCredentials function.

For more details, see Access HERE HD Live Map Data. For an example, see Use HERE HD Live Map
Data to Verify Lane Configurations.

Note HERE HDLM reader objects do not work on Linux machines.

Custom Basemaps: Choose geographic basemaps on which to
visualize driving routes in geoplayer
The geoplayer object now supports the use of custom basemaps from providers such as HERE
Technologies and OpenStreetMap. To specify a custom basemap, use the addCustomBasemap
function. To remove a custom basemap, use the removeCustomBasemap function.

Scenario Reader: Read driving scenarios into Simulink to test vehicle
controllers and sensor fusion algorithms
The Scenario Reader block reads the roads and actors from a scenario file created using the Driving
Scenario Designer app. Use the output actor poses and lane boundaries to test your vehicle control
and sensor fusion models. The block supports open-loop and closed-loop models and can return
outputs in either vehicle coordinates or world coordinates.

For more details on using the Scenario Reader block, see these examples:

• Test Open-Loop ADAS Algorithm Using Driving Scenario
• Test Closed-Loop ADAS Algorithm Using Driving Scenario

Ground Truth Labeling: Organize labels by logical groups, use assisted
freehand for pixel labeling, and other enhancements
With the Ground Truth Labeler app, you can now:

• Create groups for organizing label definitions. You can also move labels between groups by
dragging them.

• Use the assisted freehand to create pixel regions of interest (ROIs) for semantic segmentation.
This tool automatically find edges between selected points in an image.

3. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmreader.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmconfiguration.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/herehdlmcredentials.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/access-here-hd-live-map-data.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/use-here-hd-live-map-data-to-verify-lane-configurations.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/use-here-hd-live-map-data-to-verify-lane-configurations.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/geoplayer.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/addcustombasemap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/removecustombasemap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/scenarioreader.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/test-open-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2019a/driving/ug/test-closed-loop-adas-algorithm-using-driving-scenario.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/groundtruthlabeler-app.html
https://www.here.com

• Move multiple selected ROIs in an image.
• Edit previously created label definitions.
• Add additional list items to a previously created attribute.

Longitudinal Controller: Control the velocity of autonomous vehicles
The Longitudinal Controller Stanley block computes the acceleration and deceleration commands
needed to control the velocity of a vehicle. The block computes these commands using the discrete
proportional-integral control law. Use this block in a closed-loop simulation to adjust the velocity of a
vehicle as it follows a path.

Dynamic Lateral Controller: Control the steering angle of autonomous
vehicles considering realistic vehicle dynamics
The Lateral Controller Stanley block now includes an option to specify a dynamic bicycle vehicle
model. Use this model to compute the steering angle of vehicles in highway scenarios or other high-
speed environments.

Path Smoother: Smooth a planned vehicle path
Use the Path Smoother Spline block and smoothPathSpline function to smooth paths that were
planned using a pathPlannerRRT object or other path planner. To generate a smoothed path, the
block and function fit a parametric cubic spline onto the original path. The generated paths are
smooth enough for vehicle controllers to execute.

Code Generation for Path Planning: Generate C/C++ code for vehicle
path planning using MATLAB Coder
These path planning functions and objects now support code generation:

• vehicleDimensions
• inflationCollisionChecker
• vehicleCostmap
• checkFree
• checkOccupied
• getCosts
• setCosts
• pathPlannerRRT
• plan
• driving.Path
• interpolate
• driving.DubinsPathSegment
• driving.ReedsSheppPathSegment
• checkPathValidity

5-3

https://www.mathworks.com/help/releases/R2019a/driving/ref/longitudinalcontrollerstanley.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/lateralcontrollerstanley.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathsmootherspline.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/smoothpathspline.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehicledimensions.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.costmap.inflationcollisionchecker.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkfree.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkoccupied.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.getcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.setcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.plan.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.dubinspathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.reedsshepppathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/checkpathvalidity.html

• smoothPathSpline

For information on code generation limitations for any function or object, see its individual reference
page. For a code generation example, see Code Generation for Path Planning and Vehicle Control.

You can also generate code from these functions and objects in Simulink by using the MATLAB
Function block.

YOLO v2 Object Detection: Detect objects in a monocular camera
using a "you-only-look-once" v2 deep learning object detector
The configureDetectorMonoCamera function can now configure a YOLO v2 object detector,
returning a yolov2ObjectDetectorMonoCamera object.

Scenario Generation Example: Generate virtual driving scenarios from
recorded vehicle data
The Scenario Generation from Recorded Vehicle Data example shows how to generate a virtual
driving scenario from GPS and lidar data recorded from a vehicle.

Using virtual scenarios, you can:

• Visualize and study the real scenario being recreated from the recorded vehicle data.
• Synthesize scenario variations by programmatically modifying the virtual scenario. You can use

these variations when designing and evaluating autonomous driving systems.

Tracking Examples: Track vehicles using lidar; evaluate the
performance of extended object trackers
The Track Vehicles Using Lidar: From Point Cloud to Track List example shows how to use a joint
probabilistic data association (JPDA) tracker to track vehicles with a lidar sensor.

In addition, the Extended Object Tracking example now shows how to track extended objects using a
probability hypothesis density (PHD) tracker. The example also shows how to use error and
assignment metrics to evaluate the results of different trackers.

These examples require a Sensor Fusion and Tracking Toolbox license.

R2019a

5-4

https://www.mathworks.com/help/releases/R2019a/driving/ref/smoothpathspline.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/code-generation-for-path-planning-and-vehicle-control.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/yolov2objectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/scenario-generation-from-recorded-vehicle-data.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/track-vehicles-using-lidar.html
https://www.mathworks.com/help/releases/R2019a/driving/examples/extended-object-tracking.html

R2018b

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

6

Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections,
and tracks in your model
The Bird's-Eye Scope displays streaming detections and object tracks from your model on a bird's-
eye plot. You can use the Bird's-Eye Scope to:

• Inspect the coverage areas of radar and vision sensors.
• Analyze the sensor detections of lanes and actors in a driving scenario.
• Analyze the tracks of moving objects.

To get started using the scope, see Visualize Sensor Data and Tracks in Bird's-Eye Scope.

Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP
and other prebuilt scenarios
In the Driving Scenario Designer app, you can now test that your algorithms comply with ADAS
industry standards by using prebuilt Euro NCAP® driving scenarios. These scenarios model multiple
variations of Euro NCAP test procedures for lane keeping assist, automatic emergency braking, and
emergency lane keeping. For more details, see Generate Synthetic Detections from a Euro NCAP
Scenario and the Automatic Emergency Braking with Sensor Fusion example.

In addition to Euro NCAP scenarios, the app includes prebuilt driving scenarios of common driving
maneuvers at intersections. See Generate Synthetic Detections from a Prebuilt Driving Scenario

OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving
scenario
In the Driving Scenario Designer app, you can now include roads built using the OpenDRIVE
format specification. For more details, see Add OpenDRIVE Roads to Driving Scenario.

You can also load these roads into a drivingScenario object by using the roadNetwork function.

Improved Collision Checking in vehicleCostmap Object: Configure
collision checking to plan paths through narrow passages
The inflationCollisionChecker function creates a configuration object that specifies how the
vehicleCostmap object checks for collisions. You can use this collision-checking configuration
object to reduce the amount of obstacle inflation in the costmap. By reducing this inflation amount,
path planning algorithms can plan collision-free paths through narrow passages such as parking
spots.

For compatibility considerations, see “InflationRadius and VehicleDimensions properties of
vehicleCostmap object are not recommended” on page 6-4.

Kinematic Lateral Controller: Control the steering angle of an
autonomous vehicle
The Lateral Controller Stanley block and lateralControllerStanley function compute the
steering angle of a vehicle using the Stanley method, a kinematic control algorithm. Use this block or

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/driving/ref/birdseyescope.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/visualize-sensor-data-and-tracks-in-birds-eye-scope.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-euro-ncap-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-euro-ncap-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/generate-synthetic-detections-from-a-prebuilt-driving-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/add-opendrive-roads-to-driving-scenario.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenario-class.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenario.roadnetwork.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.costmap.inflationcollisionchecker.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/lateralcontrollerstanley.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/lateralcontrollerstanleyfunction.html

function in a closed-loop simulation to adjust the steering angle of a vehicle as it follows a path. To
learn more, see Lateral Control Tutorial.

Monocular Camera Parameter Estimation: Configure a monocular
camera by estimating its extrinsic parameters
The estimateMonoCameraParameters function estimates the extrinsic parameters of a monocular
camera that has been calibrated using a checkerboard pattern. For more details, see Calibrate a
Monocular Camera.

Radar Sensor Model Enhancements: Model occlusions in radar sensors
In the radarDetectionGenerator System object, use the HasOcclusion property to generate
detections only from objects for which the radar has a direct line of sight.

Obtain transition poses and direction changes from a planned path
The driving.Path object returned by pathPlannerRRT now contains more specific descriptions of
path segments, including their motion lengths, motion directions, and motion types (Dubins or Reeds-
Shepp). Use the interpolate function to sample poses along the path, including transition poses,
and to return changes in direction. You can then use these sampled poses and direction changes to
develop a path smoothing algorithm.

For compatibility considerations, see “connectingPoses function and driving.Path object properties
KeyPoses and NumSegments are not recommended” on page 6-5.

Define multiple custom labels in Ground Truth Labeler connector
You can now synchronize the Ground Truth Labeler app with external labeling tools containing
multiple custom labels. Specify these labels and their descriptions using the LabelName and
LabelDescription properties of the driving.connector.Connector class.

Ground Truth Labeler enhancements
The Ground Truth Labeler app now includes visuals indicating the relationship between the labels
and sublabels of an image. For more details on the label-sublabel relationship, see Use Sublabels and
Attributes to Label Ground Truth Data (Computer Vision System Toolbox).

In addition, in the Label Summary window, you can now navigate between unlabeled frames. For
more details on the Label Summary window, see View Summary of Ground Truth Labels (Computer
Vision System Toolbox).

Actors follow road elevation and banking angles in Driving Scenario
Designer
In the Driving Scenario Designer app, when you create an actor and specify waypoints for it to
follow, the actor now travels along the elevation angle and banking angle of the road.

6-3

https://www.mathworks.com/help/releases/R2018b/driving/examples/lateral-control-tutorial.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/estimatemonocameraparameters.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/calibrate-a-monocular-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/ug/calibrate-a-monocular-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/use-sublabels-to-label-ground-truth-data.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/use-sublabels-to-label-ground-truth-data.html
https://www.mathworks.com/help/releases/R2018b/vision/ug/view-summary-of-ground-truth-labels.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html

Monocular camera setup with fisheye lens example
The Configure Monocular Fisheye Camera example shows how to set up a monocular camera that has
a fisheye lens.

Sensor fusion and tracking examples
The following examples require a Sensor Fusion and Tracking Toolbox license.

• The Extended Object Tracking example shows how to track objects whose dimensions span
multiple sensor resolution cells.

• The Visual-Inertial Odometry Using Synthetic Data example shows how to estimate the pose
(position and orientation) of a vehicle by using an inertial measurement unit (IMU) and a
monocular camera.

Functionality being removed or changed
InflationRadius and VehicleDimensions properties of vehicleCostmap object are not
recommended
Still runs

The InflationRadius and VehicleDimensions properties of vehicleCostmap are not
recommended. Instead:

1 Use the inflationCollisionChecker function to create an InflationCollisionChecker
object, which has the properties InflationRadius and VehicleDimensions.

2 Specify this object as the value of the CollisionChecker property of vehicleCostmap.

There are no current plans to remove the InflationRadius and VehicleDimensions properties
of vehicleCostmap. If you do specify these properties, the values in the corresponding properties of
CollisionChecker are updated to match.

When the vehicleCostmap object was introduced in R2018a, this object inflated obstacles based on
the specified inflation radius and vehicle dimensions only. The InflationCollisionChecker
object, which is specified in the CollisionChecker property of vehicleCostmap, provides
additional configuration options for inflating obstacles. For example, you can specify the number of
circles used to represent the vehicle shape, enabling more precise collision checking.

Update Code

The table shows a typical usage of the InflationRadius and VehicleDimensions properties of
vehicleCostmap. It also shows how to update your code using the corresponding properties of an
InflationCollisionChecker object.

Discouraged Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

R2018b

6-4

https://www.mathworks.com/help/releases/R2018b/driving/examples/configure-monocular-fisheye-camera.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/extended-object-tracking.html
https://www.mathworks.com/help/releases/R2018b/driving/examples/visual-inertial-odometry-using-synthetic-data.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.costmap.inflationcollisionchecker.html

connectingPoses function and driving.Path object properties KeyPoses and NumSegments
are not recommended
Still runs

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function, which returns
key poses, connecting poses, transition poses, and direction changes. The KeyPoses and
NumSegments properties are no longer relevant. KeyPoses, NumSegments, and connectingPoses
will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the entire path
or along the path segments that are between key poses (as specified by KeyPoses). Using the
interpolate function, you can now obtain intermediate poses at any specified point along the path.
The interpolate function also provides transition poses at which changes in direction occur.

Update Code

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of connectingPoses and
how to update your code to use interpolate instead. Here, path is a driving.Path object
returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct syntax for
obtaining segment poses. However, you can
sample poses of a segment using a specified step
time. For example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples);

Corrections to Image Width and Image Height camera parameters of Driving Scenario
Designer
Behavior change

Starting in R2018b, in the Camera Settings group of the Driving Scenario Designer app, the
Image Width and Image Height parameters set their expected values. Previously, Image Width
set the height of images produced by the camera, and Image Height set the width of images
produced by the camera.

If you are using R2018a, to produce the expected image sizes, transpose the values set in the Image
Width and Image Height parameters.

6-5

https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.connectingposes.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2018b/driving/ref/drivingscenariodesigner-app.html

R2018a

Version: 1.2

New Features

Compatibility Considerations

7

Driving Scenario Designer: Interactively define actors and driving
scenarios to test controllers and sensor fusion algorithms
Use the Driving Scenario Designer app to design a synthetic driving scenario composed of roads
and actors (vehicles, pedestrians, and so on). You can generate visual and radar detections of actors
in the scenario to test your sensor fusion and control algorithms. To learn how to generate detections,
see Generate Synthetic Detections from an Interactive Driving Scenario.

Path Planning: Plan driving paths using an RRT* path planner and
costmap
Use the pathPlannerRRT, vehicleCostmap, and checkPathValidity functions to plan a driving
path by using an optimal rapidly exploring random tree (RRT*) motion-planning algorithm. To learn
how to use these functions to plan a path, see the Automated Parking Valet example.

Streaming Geographic Map Display: Visualize a geographic route on a
map
Use the geoplayer function to create an interactive map that displays the streaming geographic
coordinates of a driving route.

Ground Truth Pixel Labeling: Interactively label individual pixels in
video data
In the Ground Truth Labeler app, you can now interactively label individual pixels in video data for
training semantic segmentation algorithms. You can also automate the labeling. See Automate
Ground Truth Labeling for Semantic Segmentation.

Ground Truth Label Attributes: Organize and classify ground truth
labels using attributes and sublabels
In the Ground Truth Labeler app, you can now attach attributes to labels and create hierarchical
sublabels. For more details, see Define Ground Truth Data for Video or Image Sequences.

Lidar Segmentation: Quickly segment 3-D point clouds from lidar
Use the segmentLidarData function to segment organized point clouds into clusters.

ACC Reference Application: Use a reference model to simulate and
test adaptive cruise controller (ACC) systems
The ACC reference application is a model of an ACC system implemented using sensor fusion. Use
this model to design your own ACC system, test it in Simulink using synthetic radar and vision data
generated by Automated Driving System Toolbox™ blocks, and automatically generate C code. To
learn more, see Adaptive Cruise Control with Sensor Fusion.

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenariodesigner-app.html
https://www.mathworks.com/help/releases/R2018a/driving/ug/generate-synthetic-detections-from-an-interactive-driving-scenario.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/rrtpathplanner.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/checkpathvalidity.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automated-parking-valet.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/geoplayer.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automate-ground-truth-labeling-for-semantic-segmentation.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/automate-ground-truth-labeling-for-semantic-segmentation.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2018a/driving/ug/define-ground-truth-data-for-video-or-image-sequences.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/segmentlidardata.html
https://www.mathworks.com/help/releases/R2018a/driving/examples/adaptive-cruise-control-with-sensor-fusion.html

Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar
data into MATLAB
Use a velodyneFileReader object to read point cloud data from Velodyne packet capture (PCAP)
files.

Detect lanes more precisely by using third-degree polynomial lane
boundary models
Use the cubicLaneBoundary and findCubicLaneBoundaries functions to create and find lane
boundaries using third-degree polynomial models. You can display detected lanes on a bird's-eye-view
plot, and overlay the lane markings onto images, by using the insertLaneBoundary function.

Add and detect lanes in Driving Scenario
You can add lane markings to roads in a driving scenario simulation using the new lane marking
function, laneMarking, and lane specification function, lanespec. The driving scenario road
method accepts a lane specification as an input. To plot lane markings in birdsEyePlot, use
laneMarkingPlotter and plotLaneMarking.

In addition, the vision detection generator System object, visionDetectionGenerator, can now
detect lanes in a driving scenario simulation. The corresponding Simulink block, Vision Detection
Generator, can also detect lanes.

Transform [x,y,z] locations in vehicle coordinates to image
coordinates
The vehicleToImage method of monoCamera now accepts three-dimensional [x,y,z] point
coordinates. Previously, vehicleToImage accepted only [x,y] coordinates. By transforming [x,y,z]
locations in vehicle coordinates, you can display point locations above the road surface.

Path method being removed
The path method of the actor and vehicle classes is being removed. Use the trajectory method
instead.

Compatibility Considerations
Functionality Result Use Instead Compatibility

Considerations
path method Still runs trajectory method Replace all instances of

path with
trajectory. The path
syntax which assumes a
default speed does not
exist in trajectory.
You must specify a
speed input argument.

7-3

https://www.mathworks.com/help/releases/R2018a/driving/ref/velodynefilereader.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/cubiclaneboundary.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/findcubiclaneboundaries.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanemarking-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanespec-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.road.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/birdseyeplot.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/lanemarkingplotter.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/plotlanemarking.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera.vehicletoimage.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera.vehicletoimage.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/path.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.actor.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/drivingscenario.vehicle.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/trajectory.html

Direction of Yaw Angle Rotation Adjusted
The monoCamera function was updated to correct the direction of rotation for the yaw angle.

Compatibility Considerations
Functionality Compatibility Considerations
monoCamera function If you are using R2017b version of this function,

you must multiply the yaw angle by -1.

R2018a

7-4

https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2018a/driving/ref/monocamera-class.html

R2017b

Version: 1.1

New Features

8

Sensor Fusion Simulink Blocks: Track multiple objects and fuse
detections from multiple sensors
Use the Detection Concatenation block and the Multi Object Tracker block to fuse and track objects
detected by multiple sensors.

Sensor Simulation Using Simulink Blocks: Generate synthetic object
lists from camera and radar sensor models
Use the Radar Detection Generator and the Vision Detection Generator blocks to generate synthetic
detections for testing and design of your sensor fusion and tracking algorithms

Ground Truth Labeling App: Reverse playback capability while
processing algorithms
In the Ground Truth Labeler app, you can now process the video in reverse using the automation
algorithm. You can also now dock and undock the Visual Summary display.

Code Generation for Sensor Models: Generate C code for camera and
radar sensor models
Use the radarDetectionGenerator and visionDetectionGenerator System objects to
generate C code to generate synthetic sensor detection object lists.

Autonomous Driving Examples
• Sensor Fusion Using Synthetic Radar and Vision Data
• Adaptive Cruise Control with Sensor Fusion
• Evaluate and Visualize Lane Boundary Detections Against Ground Truth
• Radar Signal Simulation and Processing for Automated Driving

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/driving/ref/detectionconcatenation.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/multiobjecttracker.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/radardetectiongenerator.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/visiondetectiongenerator.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/radardetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2017b/driving/ref/visiondetectiongenerator-system-object.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data-2.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/adaptive-cruise-control-with-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/evaluate-and-visualize-lane-boundary-detections-against-ground-truth.html
https://www.mathworks.com/help/releases/R2017b/driving/examples/radar-signal-simulation-and-processing-for-automated-driving.html

R2017a

Version: 1.0

New Features

9

Ground Truth Labeling
The Ground Truth Labeler app enables you to label ground truth data in a video or in a sequence of
images. Use the app to interactively specify rectangular and polyline regions of interest (ROIs), and
scene labels. You can export marked labels from the app and use them to train an object detector or
to compare against ground truth data. The app includes computer vision algorithms to automate the
labeling of ground truth by using detection and tracking algorithms. It also provides an API and
workflow that enables you to import your own algorithms to automate the labeling of ground truth.
You can also use the driving.connector.Connector API to display additional time-synchronized
signals, such as lidar or CAN bus data.

Ground Truth Labeling Utilities Description
Ground Truth Labeler App for labeling ground truth data in a video or

sequence of images
groundTruth Object for storing ground truth labels
groundTruthDataSource Create a ground truth data source
objectDetectorTrainingData Create training data from ground truth data for

an object detector
driving.automation.AutomationAlgorithm Define automated labeling algorithm in the

Ground Truth Labeler app
driving.connector.Connector Interface to connect an external tool to the

Ground Truth Labeler app
evaluateLaneBoundaries Evaluate lane boundary models against ground

truth

Monocular Camera Sensor Configuration
Use the monoCamera object to define your monocular camera configuration. You can use this object
to convert locations between vehicle and image coordinate systems. You can also use birdsEyeView
with the monoCamera object to create a bird’s-eye-view image.

Object and Lane Boundary Detection
Detect objects using machine learning techniques, including deep learning. You can also segment,
detect, and model parabolic lane boundaries using RANSAC. Configure object detectors to detect
objects of a known physical size using the configureDetectorMonoCamera function.

Object Detection

• vehicleDetectorACF
• vehicleDetectorFasterRCNN
• peopleDetectorACF
• configureDetectorMonoCamera
• acfObjectDetectorMonoCamera
• objectDetectorTrainingData
• fastRCNNObjectDetectorMonoCamera

R2017a

9-2

https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthlabeler-app.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruth-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/groundtruthdatasource-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetectortrainingdata.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.automation.automationalgorithm-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/driving.connector.connector-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/evaluatelaneboundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/monocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/birdseyeview-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/vehicledetectoracf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/vehicledetectorfasterrcnn.html
https://www.mathworks.com/help/releases/R2017a/vision/ref/peopledetectoracf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/configuredetectormonocamera.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/acfobjectdetectormonocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetectortrainingdata.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/fastrcnnobjectdetectormonocamera-class.html

• fasterRCNNObjectDetectorMonoCamera

Lane Boundary Detection

• segmentLaneMarkerRidge
• findParabolicLaneBoundaries
• parabolicLaneBoundary
• insertLaneBoundary
• evaluateLaneBoundaries
• fitPolynomialRANSAC
• ransac

Multi-object Tracking
You can create a multi-object tracker for sensor fusion. The tracker uses Kalman filters for estimating
the state of motion of an object. Measurements made on the object let you continuously solve for the
object's position and velocity. You can use constant-velocity or constant-acceleration motion models,
or define your own models.

• multiObjectTracker
• objectDetection
• getTrackPositions
• getTrackVelocities
• trackingKF
• trackingEKF
• trackingUKF

Bird’s-Eye Plot
Use birdsEyePlot to display a bird's-eye plot of a 2-D scene in the immediate vicinity of a vehicle.
You can use bird's-eye plots with sensors capable of detecting objects and lanes.

Driving Scenario Generation and Sensor Models
The drivingScenario class defines road networks, vehicles, and traffic scenarios. A driving
scenario is a 3-D arena containing roads and actors. Actors can represent anything that moves, such
as cars, pedestrians, and bicycles. Actors can also include stationary obstacles that can influence the
motion of other actors. You can use radarDetectionGenerator and the
visionDetectionGenerator to create statistical models for generating synthetic radar and
camera sensor detections.

Automated Driving Examples
The release of Automated Driving System Toolbox includes the following examples.

9-3

https://www.mathworks.com/help/releases/R2017a/driving/ref/fasterrcnnobjectdetectormonocamera-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/segmentlanemarkerridge.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/findparaboliclaneboundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/paraboliclaneboundary-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/evaluatelaneboundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/fitpolynomialransac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ransac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/multiobjecttracker-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetection-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackvelocities.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingkf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingekf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingukf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/birdseyeplot-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/drivingscenario-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/radardetectiongenerator-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/visiondetectiongenerator-class.html

Reference Applications
Visual Perception Using Monocular Camera
Forward Collision Warning Using Sensor Fusion
Sensor Fusion Using Synthetic Radar and Vision Data

Tracking and Sensor Fusion
Forward Collision Warning Using Sensor Fusion
Track Multiple Vehicles Using a Camera
Track Pedestrians from a Moving Car
Multiple Object Tracking Tutorial
Code Generation for Tracking and Sensor Fusion

Perception with Computer Vision
Visual Perception Using Monocular Camera
Ground Plane and Obstacle Detection Using Lidar
Train a Deep Learning Vehicle Detector

Algorithm Validation and Visualization
Automate Ground Truth Labeling of Lane Boundaries
Annotate Video Using Detections in Vehicle Coordinates
Visualize Sensor Coverage, Detections, and Tracks
Evaluate Lane Boundary Detections Against Ground Truth Data

Scenario Generation
Sensor Fusion Using Synthetic Radar and Vision Data
Driving Scenario Tutorial
Define Road Layouts
Create Actor and Vehicle Paths
Model Radar Sensor Detections
Model Vision Sensor Detections

R2017a

9-4

https://www.mathworks.com/help/releases/R2017a/driving/examples/visual-perception-using-monocular-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/track-multiple-vehicles-using-a-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/track-pedestrians-from-a-moving-car.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/multiple-object-tracking-tutorial.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/code-generation-for-tracking-and-sensor-fusion.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/visual-perception-using-monocular-camera.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/ground-plane-and-obstacle-detection-using-lidar.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/train-a-deep-learning-vehicle-detector.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/automate-ground-truth-labeling-of-lane-boundaries.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/annotate-video-using-detections-in-vehicle-coordinates.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/visualize-sensor-coverage-detections-and-tracks.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/evaluate-lane-boundary-detections-against-ground-truth-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/sensor-fusion-using-synthetic-radar-and-vision-data.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/driving-scenario-tutorial.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/define-road-layouts.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/create-actor-and-vehicle-paths.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/model-radar-sensor-detections.html
https://www.mathworks.com/help/releases/R2017a/driving/examples/model-vision-sensor-detections.html

	R2021a
	ASAM OpenSCENARIO Export: Share a driving scenario using the ASAM OpenSCENARIO 1.0 format
	Driving Scenario Import: Create driving scenarios with road data imported from Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service
	INS Sensor Model: Generate synthetic readings from an inertial navigation and GPS sensor in driving scenarios
	Ibeo File Reader: Read sensor data from Ibeo data container (IDC) files
	Barriers: Add guardrails and Jersey barriers to driving scenarios
	Radar Data Generator: Generate synthetic sensor detections and tracks from a driving scenario
	Driving Scenario Enhancements: Select multiple actors, align and distribute actors, and additional features
	Select Multiple Actors
	Align and Distribute Actors
	Specify Maximum Number of Actors and Lane Boundaries in Scenario Reader Block
	Read Actor Profiles from Scenario Reader Block
	Spawn and Despawn Actors Multiple Times
	Preview Actor Times of Arrival at Waypoints

	HERE HD Live Map Scenario Enhancements: Generate road networks with junctions and specifications for multiple lanes along a single road
	Multiple Lane Specifications: Add or drop lanes along a road
	Road Groups: Define road intersections
	OpenDRIVE Export Enhancements: Export actors to OpenDRIVE format
	Out-of-Sequence Measurements Handling: Ignore out-of-sequence measurements of object tracks, or terminate tracking when one is encountered
	Labeler Enhancements: Label object instances for semantic segmentation, automate labeling of multiple signals simultaneously, and additional features
	Unreal Engine Vehicle Enhancements: Import custom meshes and control vehicle lights
	Unreal Engine Scene Environment: Control weather and sun position
	Bird's-Eye View Example: Create a 360° bird's-eye-view image around a vehicle
	Radar and Tracking Examples: Process radar multipath detections, simulate radar ghosts from multipath detections, and fuse lidar and radar tracks in Simulink
	Localization and Mapping Examples: Build an occupancy map from lidar data using SLAM, develop a stereo visual SLAM algorithm, and perform localization using HD map traffic data
	Motion Planning Example: Plan a path through an urban environment using a dynamic occupancy grid map
	Automated Driving Reference Applications: Examples on vehicle sensor fusion, and code generation of vehicle detector, lane following controller, and lane change planner
	Functionality being removed or changed
	hereHDLMConfiguration(region) syntax has been removed
	radarDetectionGenerator System object and Radar Detection Generator block are not recommended

	R2020b
	Reverse Motion in Driving Scenarios: Simulate driving maneuvers such as backing into parking spots
	OpenStreetMap Roads: Create driving scenarios using road data imported from the OpenStreetMap web service
	OpenDRIVE Export: Share a driving scenario using the OpenDRIVE format
	Localization Examples: Develop lidar and visual SLAM algorithms for navigation using the Unreal Engine simulation environment
	Simulation 3D Vision Detection Generator Block: Generate synthetic object and lane boundary detections from the Unreal Engine simulation environment
	Lidar Sensor Model Extensions: Generate synthetic point clouds from scenarios in Driving Scenario Designer app and in Simulink
	Driving Scenario Enhancements: Rotate actors interactively, specify yaw angles with trajectories, and additional features
	Interactive Actor Rotation
	Yaw Angles for Actor Trajectories
	Actor Spawn and Despawn
	Mesh Plotter in Bird's-Eye Plot
	Ego Vehicle Indicator
	Actor Pose Indicator
	Target Poses in Specified Range
	Named Roads and Actors
	Road Object

	HERE HD Live Map Marketplace Support: Read and visualize high-definition map data from the HERE HD Live Map Marketplace service
	HERE HD Live Map Localization Layers: Read localization data such as barriers, signs, and poles from a road network
	Labeler Enhancements: Label objects in images and video using projected 3-D bounding boxes, load custom image formats, use additional keyboard shortcuts, and more
	Unreal Engine Camera Views: Visualize vehicle acceleration, pitch, and roll with improved camera controls and other usability improvements
	Smooth Transition Between Views
	Cycle Through Vehicles in Scene
	Vehicle Acceleration and Rotation
	Vehicle Pitch and Roll
	Camera Distance
	Free-Camera Views

	Tracking Examples: Perform grid-based tracking, track multiple lane boundaries, and generate code for track-level fusion
	Trajectory Planning Example: Plan a vehicle trajectory through highway traffic
	Scenario Generation Example: Automate scenario generation for driving applications
	Automated Driving Reference Applications: Lane following with intelligent vehicles, lane following with RoadRunner scenes, traffic light negotiation with Unreal Engine, and code generation for lane marker detection
	Driving Scenario Performance: Improved performance when simulating scenarios with large numbers of actors
	Functionality being removed or changed
	hereHDLMConfiguration(region) syntax will be removed
	InflationRadius and VehicleDimensions properties of vehicleCostmap object have been removed
	vehicleDetectorFasterRCNN function now uses MobileNet-v2 network architecture and does not require type of vehicle detector model as input

	R2020a
	Multisignal Ground Truth Labeling: Label multiple lidar and video signals simultaneously
	Lidar Labeling: Label lidar point clouds to train deep learning models
	3D Scene Customization: Simulate driving scenarios in a 3D environment using scenes created in the Unreal Editor
	Lidar Sensor Model: Generate synthetic point clouds from programmatic driving scenarios
	Bird's-Eye Scope Enhancements: Visualize radar and lidar data from 3D simulation sensors, and visualize actors from custom blocks
	HERE HD Live Map Roads in Scenarios: Create driving scenarios using imported road data from high-definition geographic maps
	Scenario Coordinate Transformation Blocks: Convert between vehicle and world coordinates in driving scenarios, and convert between cuboid and 3D simulation coordinates
	3D Display for Cuboid Simulations: Visualize scenarios in a 3D environment from the Driving Scenario Designer app
	Programmatic Sensor Import: Read programmatically created radar and vision sensors into the Driving Scenario Designer app
	Custom Actor Colors: Specify the colors of actors in a driving scenario
	Ego Vehicle Ground Following: Orient the ego vehicle to follow the road surface elevation in closed-loop simulations
	Rear-Facing Lane Detections: Detect lane boundaries from rear-facing cameras in driving scenarios
	Road Interactions in Scenarios: Control the ability to modify roads in driving scenarios
	Cuboid Versions of 3D Simulation Scenes: Build scenarios in the Driving Scenario Designer app for use in a 3D simulation environment
	laneMarking Function Enhancements: Define lane marking with multiple marker styles
	trajectory Function Enhancements: Pause actors at a waypoint
	Driving Scenario Designer App Enhancements: Add composite lane markings and wait times
	YOLO v2 Vehicle Detection: Detect vehicles using a vehicle detector pretrained by a you-only-look-once (YOLO) v2 network
	SSD Object Detection: Detect objects in monocular camera images using the single shot multibox detector (SSD) algorithm
	Quaternions: Represent orientation and rotations efficiently for localization
	Geographic Coordinate Transformations: Convert between geographic and local coordinates
	Multiroute Geographic Map Display: Simultaneously stream geographic coordinates from multiple driving routes
	Multiple-Object Tracking Enhancements: Initialize, confirm, and delete tracks, and predict track states at specified times
	Track History Logic: Confirm and delete tracks based on recent track history
	Alpha-Beta Estimation Filter: Track objects using a linear motion and measurement models
	Ground Truth Labeler Enhancements: Rename scene labels, select ROI color, and configure ROI label name display
	Headless Mode: Run 3D simulations more quickly by not opening the Unreal Engine visualization window
	3D Simulation Version Upgrade: Run 3D simulations using Unreal Engine, Version 4.23
	Box Truck Vehicle Type: Simulate vehicles with the dimensions of a box truck in the 3D simulation environment
	Driving Scenarios: Improved performance when creating road networks and actor trajectories
	Code Generation: Generate C/C++ code using MATLAB Coder
	Lidar SLAM Examples: Build a map from lidar data using a simultaneous localization and mapping algorithm
	Tracking Examples: Fuse radar and lidar tracks, perform track-to-track fusion in Simulink, and track vehicles using lidar in Simulink
	Automated Driving Reference Applications: Simulate highway lane following, highway lane change, and traffic light negotiation systems
	Functionality being removed or changed
	ConfirmationParameters and NumCoastingUpdates properties of the multiObjectTracker System object are not recommended
	Track output format of multiObjectTracker changed
	Renamed parameter in Simulation 3D Scene Configuration block

	R2019b
	3D Simulation: Develop, test, and verify driving algorithms in a 3D simulation environment rendered using the Unreal Engine from Epic Games
	drivingScenario Import: Read programmatically created driving scenarios into the Driving Scenario Designer app and Simulink
	Driving Scenario Designer Export to Simulink: Generate Simulink models of driving scenarios and sensors
	drivingScenario Enhancements: Create roads with driving, parking, border, shoulder, and restricted lanes
	roadNetwork Enhancements: Import additional lane types of OpenDRIVE roads into a driving scenario
	Bird's-Eye Scope World Coordinates View: Visualize scenarios in world coordinates
	Velocity Profiler: Generate the velocity profile of a driving path given kinematic constraints
	Ground Truth Labeling Enhancements: Copy and paste pixel labels, improved pan and zoom, and improved frame navigation
	Lane Boundary Detection Algorithm: Automate the labeling of lane boundaries using the Ground Truth Labeler
	Lidar Example: Build a map from lidar data
	Track-to-Track Fusion Example: Fuse tracks from multiple vehicles to increase automotive safety (requires Sensor Fusion and Tracking Toolbox)
	HERE HD Live Map Linux Support: Read and visualize high-definition map data on Linux machines
	YOLO v2 Acceleration: Acceleration support for YOLO v2 object detection
	Code Generation: Generate C/C++ code using MATLAB Coder
	Functionality being removed or changed
	InflationRadius and VehicleDimensions properties of vehicleCostmap object will be removed

	R2019a
	HERE HD Live Map Reader: Read and visualize data from high-definition maps designed for automated driving applications
	Custom Basemaps: Choose geographic basemaps on which to visualize driving routes in geoplayer
	Scenario Reader: Read driving scenarios into Simulink to test vehicle controllers and sensor fusion algorithms
	Ground Truth Labeling: Organize labels by logical groups, use assisted freehand for pixel labeling, and other enhancements
	Longitudinal Controller: Control the velocity of autonomous vehicles
	Dynamic Lateral Controller: Control the steering angle of autonomous vehicles considering realistic vehicle dynamics
	Path Smoother: Smooth a planned vehicle path
	Code Generation for Path Planning: Generate C/C++ code for vehicle path planning using MATLAB Coder
	YOLO v2 Object Detection: Detect objects in a monocular camera using a "you-only-look-once" v2 deep learning object detector
	Scenario Generation Example: Generate virtual driving scenarios from recorded vehicle data
	Tracking Examples: Track vehicles using lidar; evaluate the performance of extended object trackers

	R2018b
	Bird's-Eye Scope for Simulink: Analyze sensor coverages, detections, and tracks in your model
	Prebuilt Driving Scenarios: Test driving algorithms using Euro NCAP and other prebuilt scenarios
	OpenDRIVE File Import Support: Load OpenDRIVE roads into a driving scenario
	Improved Collision Checking in vehicleCostmap Object: Configure collision checking to plan paths through narrow passages
	Kinematic Lateral Controller: Control the steering angle of an autonomous vehicle
	Monocular Camera Parameter Estimation: Configure a monocular camera by estimating its extrinsic parameters
	Radar Sensor Model Enhancements: Model occlusions in radar sensors
	Obtain transition poses and direction changes from a planned path
	Define multiple custom labels in Ground Truth Labeler connector
	Ground Truth Labeler enhancements
	Actors follow road elevation and banking angles in Driving Scenario Designer
	Monocular camera setup with fisheye lens example
	Sensor fusion and tracking examples
	Functionality being removed or changed
	InflationRadius and VehicleDimensions properties of vehicleCostmap object are not recommended
	connectingPoses function and driving.Path object properties KeyPoses and NumSegments are not recommended
	Corrections to Image Width and Image Height camera parameters of Driving Scenario Designer

	R2018a
	Driving Scenario Designer: Interactively define actors and driving scenarios to test controllers and sensor fusion algorithms
	Path Planning: Plan driving paths using an RRT* path planner and costmap
	Streaming Geographic Map Display: Visualize a geographic route on a map
	Ground Truth Pixel Labeling: Interactively label individual pixels in video data
	Ground Truth Label Attributes: Organize and classify ground truth labels using attributes and sublabels
	Lidar Segmentation: Quickly segment 3-D point clouds from lidar
	ACC Reference Application: Use a reference model to simulate and test adaptive cruise controller (ACC) systems
	Point Cloud Reader for Velodyne PCAP Files: Import Velodyne lidar data into MATLAB
	Detect lanes more precisely by using third-degree polynomial lane boundary models
	Add and detect lanes in Driving Scenario
	Transform [x,y,z] locations in vehicle coordinates to image coordinates
	Path method being removed
	Direction of Yaw Angle Rotation Adjusted

	R2017b
	Sensor Fusion Simulink Blocks: Track multiple objects and fuse detections from multiple sensors
	Sensor Simulation Using Simulink Blocks: Generate synthetic object lists from camera and radar sensor models
	Ground Truth Labeling App: Reverse playback capability while processing algorithms
	Code Generation for Sensor Models: Generate C code for camera and radar sensor models
	Autonomous Driving Examples

	R2017a
	Ground Truth Labeling
	Monocular Camera Sensor Configuration
	Object and Lane Boundary Detection
	Multi-object Tracking
	Bird’s-Eye Plot
	Driving Scenario Generation and Sensor Models
	Automated Driving Examples

